Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 7 và 11 là số nguyên tố.
=> k = 1
Nếu \(k>1\) thì 7k chia hết cho 7; 7k chia hết cho k.
<=> 11k chia hết cho 11 và 11k chia hết cho k
Vậy k = 1
Ta có 7 và 11 là số nguyên tố.
=> k = 1
Nếu k > 1 thì 7k chia hết cho 7; 7k chia hết cho k.
<=> 11k chia hết cho 11 và 11k chia hết cho k
Vậy k = 1
a ) 15* = 151 và 157.
17* = 171 ; 172 ; 174 ; 175 ; 176 ; 177 ; 178.
b) 5k = 5 . 1 { Số nguyên tố } ; k = 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9. { Hợp số }
19k = 19 . 1 { Số nguyên tố } ; k = 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 { Hợp số }
a, k = 1
b, k là số tự nhiên lớn hơn 1
c, k = 3 vì 22 chia hết cho 11 và 11 là số nguyên tố
để 11k là số nguyên tố thì 11k chỉ có hai ước là 1 và chính nó.
Do đó với k là số nguyên tố thì 11k có các ước là 1,k,11,11k nên 11k là hợp số .
Suy ra kϵϕ
Vì là số nguyên tố nên nên
Nếu k=2=> k+2=4 là hợp số
Nếu k=3 => k+2=5; k+4=7 đều là hợp số
Vậy k=3
a﴿ Điều kiện: k>0
Số nguyên tố là số có hai ước tự nhiên 1 và chính nó. Mà 11 là số nguyên tố
11k có các ước: 1,k và 11 ﴾vẫn còn nếu k là hợp số﴿
Buộc k phải bằng 1 để thõa mãn yêu cầu đề bài
b) ﴿ Vì k là số tự nhiên nên :
Nếu k = 0 thì 7 . k = 0, không phải số nguyên tố.
Nếu k = 1 thì 7 . k = 7, là số nguyên tố.
Nếu k ≥ 2 thì 7 . k ∈ B﴾7﴿, không phải số nguyên tố.
Vậy k = 1 thỏa mãn đề bài
câu c tương tự câu b