Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S = 1 + 4 + 4^ 2 + ... + 4\)35
\(4S = 4 + 4^2 + 4 ^ 3 + ... + 4\)36
\(4S - S = ( 1 + 4 + 4^ 2 + ... + \)436\()\) \(- ( 1 + 4 + 4 ^ 2 + ... + 4\)35 \()\)
\(3S = 4\)36 \(- 1\)
\(3S = 64\)12 - 11
\(Ta thấy : 64\)12 \(- 1 < 64\)12
\(Do đó : 3S < 64\)12
\(Vậy : 3S < 64\)12
S = 40 + 41 + 42 + 43 + ........... + 435
=> 4S = 4.( 40 + 41 + 42 + 43 + ........... + 435 )
=> 4S = 41+42 + 43 + ... + 436
=> 3S = ( 41+42 + 43 + ... + 436 ) - ( 40 + 41 + 42 + 43 + ........... + 435 )
=> 3S = 436 - 40 = 436 - 1
Ta có : 436 - 1 = ( 43 )12 - 1 = 6412 - 1 < 6412
Vậy 3S < 6412
Bạn nhân 4S = 4( 40+41+......+435) = 41+42+43+......+436
Lấy 4S - S = 3S = 41+42+43+......+436- (40+41+42......+435) = 436- 1
3S = 436- 1 = (43)12-1 = 6412-1 < 6412
\(A=4^o+4^1+4^2+4^3+......+4^{23}\)
\(4A=4+4^2+4^3+4^4+......+4^{24}\)
\(3A=4^{24}-4^o\)
\(3A=4^{24}-1\)
\(3A+1=4^{24}\)
\(3A=\left(4^3\right)^8=64^8\)
Suy ra \(3A+1\ge64^7\).
2S=2+22+23+...+29+210
2S-S=210-1
S=210-1
So sánh:
210-1 và 5.28
210-1=1023
5.28=1280
Vì 1023<1280 nên S<5.28
4P = 4+4^2+....+4^101
4P - P = (4-4)+(4^2-4^2)+.....+(4^100 - 4^100) + 4^101 - 1
3P = 4^101 -1
P = (4^101 - 1)/3
A = 1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90 =
1-1/2+1-1/6+1-1/12+1-1/20+1-1/30+1-1/42+1-1/56+1-1/72+1-1/90 =
9 – (1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90) =
9 – [1/(1x2)+1/(2x3)+1/(3x4)+1/(4x5)+1/(5x6)+1/(6x7)+1/(7x8)+1/(8x9)+1/(9x10)] =
9 – ( 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10) =
9 – (1 – 1/10) = 9 – 9/10 = 81/10
Ta có: \(64^{12}=\left(4^3\right)^{12}=4^{36}\)
\(S=4^0+4^1+...+4^{34}+4^{35}\)
\(\Rightarrow4S=4^1+4^2+...+4^{35}+4^{36}\)
\(\Rightarrow4S-S=4^{36}-4^0\)
\(\Rightarrow3S=4^{36}-1< 4^{36}\)
Vậy \(3S< 64^{12}\)
\(4^0+4^1+4^2+4^3+...+4^{35}\\ 4S=4^1+4^2+4^3+4^4+...+4^{36}\\ 4S-S=\left(4^1+4^2+4^3+4^4+...+4^{36}\right)-\left(4^0+4^1+4^2+4^3+...+4^{35}\right)\\ 3S=4^{36}-1=64^{12}-1\\ Vì64^{12}-1< 64^{12}\\ \Rightarrow3S< 64^{12}\)