Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chia \(n^3-n^2+2n+7\) cho \(n^2+1\) , được \(n-1,\) dư \(n+8\)
\(n+8⋮n^2+1\)
\(\Rightarrow\left(n+8\right)\left(n-8\right)=n^2-64⋮n^2+1\)
\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)
Lần lượt cho \(n^2+1\) bằng \(1;5;13;65\) được n bằng \(0;\pm2;\pm8\)
Bài 1 :
Số số hạng của B là :
(99 - 1 ) : 1 + 1 = 99 ( số )
Tổng B là :
( 99 + 1 ) x 99 : 2 = 4950
Đ/s:......
Bài 2 :
Số số hạng của C là : ( 999 - 1 ) : 2 + 1 = 500 ( số )
Tổng C là : ( 999 + 1 ) x 500 : 2 = 250000
Đ/s:.....
\(Bài 1: B = 1 + 2 + 3 + ... + 98 + 99 Số số hạng: (99 - 1) + 1 = 99 (số hạng) Tổng trên là: (99 + 1) . (98 : 2) + 50 = 4950 Bài 2: C = 1 + 3 + 5 + ... + 997 + 999 Số số hạng: (999 - 1) : 2 +1 = 500 (số hạng) Tổng trên là: (999 + 1) . (500 : 2) = 250 000 Bài 3. D = 10 + 12 + 14 + ... + 994 + 996 + 998 Số số hạng: (998 - 10) : 2 + 1 = 495 (số hạng) Tổng trên là: (998 + 10) . (494 : 2) + 248 = 249 224\)
\(f\left(-1\right)=-1+a-b-2=0\left(1\right)\)
\(f\left(1\right)=1+a+b-2=0\left(2\right)\)
Lấy (1) cộng (2) ta đc :
\(2a-4=0\)
\(a=2\)
Thay a=2 vào (1) ta đc : b=-1
Vậy ...
f(1)=\(1^3+a.1^2+b.1-2=0\Rightarrow a+b=1\)1
f(-1)=\(\left(-1\right)^3+a.\left(-1\right)^2-b-2=0\) \(\Rightarrow a-b=3\)
\(\Rightarrow a+b+a-b=4\)\(\Rightarrow a=2\Rightarrow b=1\)
a,ta có:
f(1)= a.12+2.1+b=0
=> a+2+b=0
=> a+b=-2 (1)
f(-2)= a.(-2)2+2.(-2)+b=0
=> 4a - 4 + b=0
=> 4a+b=4 (2)
Trừ vế (2) cho vế (1) ,ta có:
3a=6
=>a= 2
thay a =2 vào (1), ta có: 2+b=-2 => b= -4
Vậy a=2, b=-4
b,Do g(x) có 2 nghiệm 1 và -1 nên:
g(1)=3.13 + a.12+b.1+c = 0
=> 3+a+b+c =0
=> a+b+c = -3 (1)
g(-1) = 3. (-1)3+a.(-1)2+b(-1)+c=0
=> -3 +a -b+c =0
=> a-b+c=3 (2)
Trừ vế (1) cho vế (2), ta có:
2b=-6
=> b=-3
thay b=-3 vào (1), ta có:
a-3+c=-3
=> a+c=0
=> a+ 2a +1=0
=> 3a=-1
=> a= \(-\frac{1}{3}\)
Khi đó ta có: \(-\frac{1}{3}+c=0\Rightarrow c=\frac{1}{3}\)
Vậy:...
P(x) = ax^2 + 5x - 3
Đa thức này có một nghiệm là 1/2 tức là P(1/2) = 0
=> a/4 + 5/2 - 3 = 0
=> a = 2
Đáp số: a = 2
với P(x) có nghiệm là 5
<=>P(5)=a*52+5*5-3
<=>a*25+25-3=5
<=>a*25=-17
<=>a=-17/25
với P(x) có nghiệm là 1/2
<=>P(1/2)=a*1/2^2+5*1/2-3
<=>a*1/4*5/2-3=1/2
<=>...
Vì \(x\) = 2 là nghiệm của F(\(x\)) =a\(x\)2 - a\(x\) + 2
Nên F(2) = 0. Ta có F(2) = a \(\times\) 22 - a \(\times\) 2 + 2 = 0
4a - 2a + 2 = 0
2a + 2 = 0
a = -2: 2 = -1
Kết luận a = -1 là giá trị thỏa mãn yêu cầu đề bài