Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, áp dụng t/c 2 tiếp tuyến cắt nhau suy ra góc bom =moa
xét tam giác cân OBAcó bom =moa suy ra oh vg ab
tứ giác đó nt do tổng 2 góc đối
b,cách mk là cm tam giác MEA đồng dạng vs MAF gg
đầu tiên bn nối I vs H Ta có IH là đg trung bình trong tam giác kab
=>IH// KB ,HAY GÓC IHA =CBA MÀ CBA =CEA =1/2 AC
=>TỨ GIÁC IHAE nt suy ra góc HEA CỘNG GÓC HIA =180 ĐỘ
GÓC HIA =BKA =90 ĐỘ
TỪ ĐÓ SUY RA GÓC HEA =90 ĐỘ HAY GÓC HEA LÀ GÓC VUÔNG
O C F A E B M P Q 1
+) Bước 1: Chứng minh \(\Delta\) FPO vuông tại P
Ta có: \(\widehat{O_1}=\widehat{FOP}=\widehat{FOE}=\widehat{FOM}+\widehat{MOE}=\frac{1}{2}\widehat{COM}+\frac{1}{2}\widehat{MOB}=\frac{1}{2}\widehat{BOC}\)
=> \(\widehat{FOP}=\frac{1}{2}\widehat{BOC}\)
mà \(\widehat{FCP}=\widehat{FCB}=\frac{1}{2}\widehat{BOC}\) ( góc nội tiếp = 1/2 góc ở tâm khi chắn cùng một cung)
=> \(\widehat{FOP}=\widehat{FCP}\)
=> Tứ giác CFPO nội tiếp => \(\widehat{FPO}+\widehat{FCO}=180^o\Rightarrow\widehat{FPO}=180^o-90^o=90^o\)
=> \(\Delta\) FPO vuông tại P
+) Bước 2: Chứng minh \(\Delta\) EQO vuông tại Q. ( Chứng minh tương tự)
+) Bước 3: Chứng minh tỉ số: \(\frac{PQ}{EF}=\frac{OQ}{OE}\)
Xét \(\Delta\) FPO vuông tại P và \(\Delta\) EQO vuông tại Q có: \(\widehat{O_1}\) chung
=> \(\Delta\) FPO ~ \(\Delta\) EQO
=> \(\frac{OQ}{OE}=\frac{OP}{OF}\)
Xét \(\Delta\) OQP và \(\Delta\) OEF có: \(\frac{OQ}{OE}=\frac{OP}{OF}\)( chứng minh trên ) và \(\widehat{O_1}\) chung
=> \(\Delta\) OQP ~ \(\Delta\) OEF
=> \(\frac{PQ}{EF}=\frac{OQ}{OE}\)(1)
+) Bước 4: Chứng minh Tỉ số \(\frac{PQ}{EF}\)không đổi khi M di chuyển trên cung nhỏ BC
Xét \(\Delta\)EQO vuông tại Q => \(\cos\widehat{O_1}=\frac{OQ}{OE}\)
Mặt khác : \(\widehat{O_1}=\frac{1}{2}\widehat{BOC}\) ( xem chứng minh ở Bước 1)
=> \(\cos\frac{1}{2}.\widehat{BOC}=\frac{OQ}{OE}\) (2)
Từ (1) ; (2) => \(\frac{PQ}{EF}=\cos\frac{1}{2}.\widehat{BOC}\)không đổi khi M di chuyển. ::))
a/ Ta có: QP vuông góc với AM tại P (gt) (1)
AB vuông góc với AM tại A(do Ax là tiếp tuyến của (O) tại A) (2)
Từ (1) và (2)=> QP//AB (3)
Mà: AP=PM=1/2 AM (gt)(4)
Từ (3) và (4)=>QP là đường trung bình trong tam giác ABM
=> QB=QM=1/2 BM (5)
Mà OB=OA (=R) (6)
Từ (5) và (6)=>OQ là đường trung bình trong tam giác ABM
=>OQ//AM (7)
Từ (2) và (7)=>góc BOQ=90 độ (=góc BAM)(8)
Tứ giác BNAC nội tiếp (O)
=> góc BCN=góc BAN (9)
Mà góc BAN+ góc ABN=90 độ (tam giác BOQ vuông do góc QOB=90 độ) (10)
Từ (9) và (10)=> góc BCN+góc ABN=90 độ (11)
Lại có: góc ABN + góc BQO= 90 độ (Tam giác BOQ vuông) (12)
Từ (11) và (12)=> góc BCN=góc BQO
hay góc BCN=góc OQN (do B, N, Q thẳng hàng) (đpcm)
Sửa đề; AH vuông góc BC, I là trung điểm của AH, MO cắt AB tại K
a: A,E,B,C cùng thuộc (O)
=>góc AEB+góc ACB=180 dộ
=>góc AEK+góc KEB+góc ACB=180 độ
=>góc KEB=90 độ-góc ACB
góc KMB=90 độ-góc ABM
mà góc ABM=góc ACB
nên góc KEB=góc KMB
=>MEKB nội tiếp
=>góc EMK=góc EBK=góc EAM
=>OM là tiếp tuyến của đừog tròn ngoại tiếp ΔMEA