ho tam giác ABC vuông tại A, đ/cao AH có AB=4,5cm;AC=6cm.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=4,5^2+6^2=7,5^2\)

=>\(BC=\sqrt{7,5^2}=7,5\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot7,5=4,5\cdot6=27\)

=>\(AH=\dfrac{27}{7,5}=3,6\left(cm\right)\)

b: Gọi M là trung điểm của HC

Vì ΔCEH vuông tại E

nên ΔCEH nội tiếp đường tròn đường kính HC

=>ΔCEH nội tiếp (M)

=>ME=MH=MC

Vì ME=MH

nên \(\widehat{MEH}=\widehat{MHE}\)

mà \(\widehat{MHE}=\widehat{ABC}\)(hai góc đồng vị, HE//AB)

nên \(\widehat{MEH}=\widehat{ABC}\)

Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>\(\widehat{DAH}=\widehat{DEH}\)

=>\(\widehat{DEH}=\widehat{HAB}\)

\(\widehat{MED}=\widehat{MEH}+\widehat{DEH}\)

\(=\widehat{HBA}+\widehat{HAB}=90^0\)

=>DE là tiếp tuyến của (M)(ĐPCM)

c: Vì ADHE là hình chữ nhật

nên AH cắt DE tại trung điểm của mỗi đường

=>I là trung điểm chung của AH và DE

Xét ΔHAC có

I,M lần lượt là trung điểm của HA,HC

=>IM là đường trung bình của ΔHAC

=>\(IM=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

14 tháng 12 2023

tui c.ơn nhiều

25 tháng 7 2017

~ ~ ~ ~ ~

Tam giác HAB có HD là đường cao

\(\Rightarrow AH^2=AD\times AB\left(htl\right)\left(1\right)\)

Tam giác HAC có HE là đường cao

\(\Rightarrow AH^2=AE\times AC\left(htl\right)\left(2\right)\)

(1) và (2) => đpcm

~ ~ ~ ~ ~

HDA = DAE = AEH = 900

=> ADHE là hcn

=> EDH = AHD và HED = EHA

- - -

Tam giác DBH vuông tại D có DM là trung tuyến (M là trung điểm của BH)

=> DM = MH

=> Tam giác MDH cân tại M

=> MDH = MHD

Ta có: MDE = MDH + HDE = MHD + DHA = AHB = 900

=> MD _I_ DE

=> DE là tiếp tuyến của đường tròn (M ; MD) (3)

- - -

Tam giác ECH vuông tại E có EN là trung tuyến (N là trung điểm của CH)

=> EN = NH

=> Tam giác NEH cân tại N

=> NEH = NHE

Ta có: NED = NEH + HED = NHE + EHA = AHC = 900

=> NE _I_ DE

=> DE là tiếp tuyến của đường tròn (N ; NE) (4)

(3) và (4) => đpcm

~ ~ ~ ~ ~

Tam giác ABC vuông tại A có AH là đường cao:

(+) BC2 = AB2 + AC2 (ptg)

=> BC = 10 (cm)

(+) AB2 = BH . BC (htl)

=> BH = 3,6 (cm)

(+) AC2 = HC . BC (htl)

=> HC = 6,4 (cm)

\(DM=\dfrac{BH}{2}=1,8\left(cm\right)\)

\(EN=\dfrac{HC}{2}=3,2\left(cm\right)\)

MD _I_ DE và NE _I_ ED

=> MD // NE

=> MDEN là hình thang

Q là trung điểm của DE (ADHE là hcn)

P là trung điểm của MN (gt)

=> PQ là đtb của hình thang MDEN

\(\Rightarrow PQ=\dfrac{\left(DM+EN\right)}{2}=2,5\left(cm\right)\)

~ ~ ~ ~ ~

20 tháng 9 2017

Sao bh lại làm đề ôn thi vào 10

20 tháng 9 2017

;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))

19 tháng 3 2017

m=-5/4 đó bạn

19 tháng 3 2017

bạn giải như thế nào vậy

22 tháng 8 2017

a)vẽ hình

áp dụng định lý pitago ta có:AB=\(\sqrt{BC^2}-AC^2=\)\(5\sqrt{5}\)(cm)

tag C=AB/AC=5\(\sqrt{5}\)/5=\(\sqrt{5}\)/2

suy ra C=48 độ,B=42độ

b) tương tự

22 tháng 8 2017

ok mik sẽ giải thích chi tiết cho bạn nha:còn hình ở phía dưới

áp dụng định lý pitago vào tam giác vuông ABC:

BC=\(\sqrt{AB^2+AC^2}=\sqrt{7^2+12^2}=\sqrt{193}\)

ta tìm tagC=\(\dfrac{7}{12}=0,58\)

sau đó ta bấm vào máy tính Casio là :SHIFT ,tag,0,58 máy tính hiện lên là 30,11

\(\Rightarrow C=30.11độ\) B=180-90-30,11=59,89

mà giải tam giác nghĩa là tìm các cạch và các góc còn thiếu của tam giác đó