Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :x + y + z = -1 \(\Rightarrow\)x + y =-( 1 + z )
xy + yz + xz = 0 \(\Rightarrow\)xy = - z ( x + y ) = z ( z + 1 )
Tương tự : xz = y ( y + 1 ) ; yz = x . ( x + 1 )
\(M=\frac{z\left(z+1\right)}{z}+\frac{y\left(y+1\right)}{y}+\frac{x\left(x+1\right)}{x}=x+y+z+3=2\)
bạn lên mạng đánh đề bài kiểu gì cũng có nhé -:)) tớ tìm rồi đấy >_<
\(\hept{\begin{cases}xyz=12\\x^3+y^3+z^3=36\end{cases}}\Leftrightarrow x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xyz+z^3=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)
\(\Leftrightarrow x=y=z\left(x+y+z>0\right)\)
Thay x=y=z vào r tính thôi bạn
ta có : xy + yz +zx = 0
* yz = -xy-zx
\(\Rightarrow\)*xy = - yz - zx
*zx= -xy-yz
ta có : M = \(\frac{xy}{z}+\frac{zx}{y}+\frac{yz}{x}\)
M = \(\frac{-yz-zx}{z}+\frac{-xy-yz}{y}+\frac{-xy-zx}{x}\)
M = \(\frac{z\times\left(-y-x\right)}{z}+\frac{y\times\left(-x-z\right)}{y}+\frac{x\times\left(-y-z\right)}{x}\)
M = -y - x - x - z - y - z
M = -2y - 2x - 2z
M = -2( x+y+z )
mà x+y+z=-1
M = (-2) . (-1)
M =2
xy+yz+zx=0 nên 1/z+1/x+1/y = 0 (chia cả 2 vế cho xyz)
Bạn chứng minh được a^3 +b^3 +c^3 =3abc khi a+b+c =0 (chắc bạn học rồi)
Do đó: 1/x^3 +1/y^3 +1/z^3 = 3/xyz
Ta có: M = yz /x^2 + zx /y^2+ xy /z^2
= xyz/ z^3 + xyz/ y^3 + xyz /z^3
= xyz (1/x^3 + 1/y^3 + 1/z^3)
= xyz .3/xyz
= 3 (vì tích xyz khác 0)
Vậy M = 3
Chúc bạn học tốt.