Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn, kẻ tiếp...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

Vị trí tương đối của đường thẳng và đường tròn

B1: Cho hàm số y=(m-1)x+2  . tìm điểm mà đồ thị hàm số đi qua với mọi m?B2: Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Trên tia đối của tia AM lấy điểm N sao cho MA=MN.BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.a) cm: tam giác ABC vuông tại C.b) cm NE vuông góc ABc) gọi F là điểm đôis xứng với E qua M, cm NF là tiếp tuyến của (O)B3: Cho nửa đường tròn (O)đường...
Đọc tiếp

B1: Cho hàm số y=(m-1)x+2  . tìm điểm mà đồ thị hàm số đi qua với mọi m?

B2: Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Trên tia đối của tia AM lấy điểm N sao cho MA=MN.BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.

a) cm: tam giác ABC vuông tại C.

b) cm NE vuông góc AB

c) gọi F là điểm đôis xứng với E qua M, cm NF là tiếp tuyến của (O)

B3: Cho nửa đường tròn (O)đường kính AB=2R. Gọi Ax, By là các ti8a vuông góc với AB tại A và B(Ax,By và nửa đường tròn cùng thuộc 1 nửa mặt phẳng bờ AB). Qua điểm C thuộc nửa đường tròn( C khác A, B). kẻ đường thẳng d là tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự ở M và N.

a)cm :MN=AM+BN

b) cm \(\Delta\)MON vuông

 c) AC giao với MO tại I, CB giao với ON tại K, cm tứ giác CIOK là hình chữ nhật

d) gọi D là giao điểm của BC  với Ax, cm MD=MA

0
18 tháng 12 2016

. A B O H C d

a) VÌ: \(OC\perp EF\left(gt\right)\)

\(AE\perp EF\left(gt\right)\)

=> OC//AE

=> \(\widehat{EAC}=\widehat{OCA}\) ( cặp góc sole trong) (1)
Vì: OC=OA(gt)

=> ΔOAC cân tại O

=> \(\widehat{OCA}=\widehat{OAC}\) (2)

Từ (1);(2) suy ra:

\(\widehat{EAC}=\widehat{OAC}\)

=>AC là tia pg của \(\widehat{BAE}\)

b)Chứng minh tương tự như câu a ta có: \(\widehat{OBC}=\widehat{FBC}\)

Xét ΔAEC và ΔAHC có:

\(\widehat{AEC}=\widehat{AHC}=90^o\)

AC:cạnh chung

\(\widehat{EAC}=\widehat{HAC}\left(cmt\right)\)

=>ΔAEC=ΔAHC ( cạnh huyền -góc nhọn)

=>AE=AH

Xét ΔCHB và ΔCFB có:

\(\widehat{CHB}=\widehat{CFB}=90^o\)

BC:cạnh chung

\(\widehat{HBC}=\widehat{FBC}\left(cmt\right)\)

=> ΔCHB=ΔCFB(ch-gn)

=> BF=HB

Xét ΔABC có: OA=OB=OC

=> ΔABC cân tại C

=> \(CH^2=AH\cdot BH\)

Hay: \(CH^2=AE\cdot BF\)

18 tháng 12 2016

Dễ mà!

Câu a): \(\widehat{ECA}=\widehat{CBH}=\widehat{ACH}\) nên \(\widehat{EAC}=\widehat{HAC}\).

Câu b): Từ câu a) CM được tam giác \(ECA\) và \(HCA\) là bằng nhau, tức là \(EA=HA\)

Tương tự, \(FB=HB\) nên \(BF.AE=AH.BH=CH^2\)

13 tháng 10 2019

d A O H B C

a ) Vì \(OC\perp EF\left(gt\right)\)

\(AE\perp EF\left(gt\right)\)

\(\Rightarrow OC//AE\)

\(\Rightarrow\widehat{EAC}=\widehat{OCA}\) ( cặp góc so le trong ) (1)
Vì : OC = OA ( gt)

\(\Rightarrow\Delta OAC\) cận tại O

\(\Rightarrow\widehat{OCA}=\widehat{OAC}\left(2\right)\)

Từ (1) và (2) suy ra :
\(\widehat{EAC}=\widehat{OAC}\)

\(\Rightarrow\) AC là tia phân giác của \(\widehat{BAE}\)

b ) Chứng minh tương tự như câu a ta có :

\(\widehat{OBC}=\widehat{FBC}\)

Xét \(\Delta AEC\) và \(\Delta AHC\) có :

\(\widehat{AEC}=\widehat{AHC}=90^o\)

AC : cạnh chung 

\(\widehat{EAC}=\widehat{HAC}\left(cmt\right)\)

\(\Rightarrow\Delta AEC=\Delta AHC\) ( cạnh huyền - góc nhọn )
\(\Rightarrow AE=AH\)

Xét \(\Delta CHB\) và \(\Delta CFB\) có :

\(\widehat{CHB}=\widehat{CFB}=90^o\)

BC : cạnh chung 

\(\widehat{HBC}=\widehat{FBC}\left(cmt\right)\)

\(\Rightarrow\Delta CHB=\Delta CFB\left(ch-gn\right)\)

\(\Rightarrow BF=HB\)

Xét : tam giác ABC có : OA = OB =OC 

\(\Rightarrow\Delta ABC\) cân tại C

\(\Rightarrow CH^2=AH.BH\)

Hay \(CH^2=AE.BF\)

Chúc bạn học tốt !!!