Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
*đối với người đi từ M đến N
thời gian người đó đi hết nửa quãng đường đầu là
T1=0.5S/v1 =S/40 (h)
thời gian người đó đi hết nửa quãng đường còn lại là
T2=0.5S/V2=S/120 (h)
*Đối với người đi từ N đến M
quãng đường người đó đi được trong nửa giờ đầu là
S1'=0.5t'.v1=10t'(km)
Quãng đường người đó đi trong nửa giờ au là
S2'= 0.5t'.v2=30t'
Mà S1'+S2'=S
10t'+30t'=S
t'=S/40(h)
Vì nếu xe xuất phát từ N đi muộn hơn xe đi từ M 0.5h thì hai xe gặp nhau cùng một lúc nên ta có
T1+T2 =t'+0.5
S/40+s/120=s/40+0.5
S=60(km )
a)ta có:
thời gian ô tô đi trên quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{2v_1}\)
thời gian ô tô đi trên đoạn đường còn lại là:
\(t_2=\frac{S_2}{v_2}=\frac{S}{2v_2}\)
vận tốc trung bình của ô tô trên toàn bộ quãng đường là:
\(v_{tb1}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{2v_1}+\frac{S}{2v_2}}=\frac{S}{S\left(\frac{1}{2v_1}+\frac{1}{2v_2}\right)}\)
\(\Leftrightarrow v_{tb1}=\frac{1}{\frac{1}{2v_1}+\frac{1}{2v_2}}=\frac{1}{\frac{v_2+v_1}{2v_1v_2}}=\frac{2v_1v_2}{v_1+v_2}\)
b)ta có:
quãng đường ô tô đi được trong nửa thời gian đầu là:
S1=v1t1=\(\frac{v_1t}{2}\)
quãng đường ô tô đi được trong thời gian còn lại là:
S2=v2t2=\(\frac{v_2t}{2}\)
vận tốc trung bình của ô tô là:
\(v_{tb2}=\frac{S_1+S_2}{t}=\frac{\frac{vt_1}{2}+\frac{v_2t}{2}}{t}\)
\(\Leftrightarrow v_{tb2}=\frac{t\left(\frac{v_1}{2}+\frac{v_2}{2}\right)}{t}=\frac{v_1+v_2}{2}\)
c)lấy vtb1-vtb2 ta có:
\(\frac{2v_1v_2}{v_1+v_2}-\frac{v_1+v_2}{2}=\frac{4v_1v_2-\left(v_1+v_2\right)^2}{2v_1+2v_2}\)
\(=\frac{4v_1v_2-\left(v_1^2+2v_1v_2+v_2^2\right)}{2v_1+2v_2}\)
\(=\frac{-v_1^2+2v_1v_2-v_2^2}{2v_1+2v_2}\)
\(=\frac{-\left(v_1-v_2\right)^2}{2v_1+2v_2}\)
mà (v1-v2)2\(\ge\) 0 nên -(v1-v2)2\(\le\) 0
mà vận tốc ko âm nên 2v1+2v2>0
từ hai điều trên nên ta suy ra vận tốc trung bình tìm được ở câu a) bé hơn câu b)
gọi thời gian ở quãng đường đầu và quãng đường thứ hai lần lượt là: t1( S1, V1) , t2( S2, V2)
theo bài ta có : t1=t2=1/2 t
Vtb= S1+S2/ t1+t2= 8
thay dữ liệu vào phép tính trên ta đc:
Vtb= S1+S2/ t1+t2= V1*t1 + V2*t2/ t1+t2 = 1/2t*V1 +1/2t*V2/ 1/2t+1/2t
<=> t*(1/2*V1 +1/2*V2)/ t = 1/2*12 + 1/2*V2 = 8
= 6+ 1/2* V2 = 8
= V2 = 4 (km/h)
Gọi thời gian xe đi đoạn nửa đoạn đầu và nửa đoạn sau là \(t_1\) và \(t_2\)
Thời gian xe đi nửa quãng đường đầu là: \(t_1=\frac{\frac{1}{2}S}{v_1}=\frac{S}{24}\)
Thời gian xe đi nửa quãng đường sau là: \(t_2=\frac{\frac{1}{2}S}{v_2}=\frac{S}{2v_2}\)
Vận tốc trung bình của xe là: \(v_{tb}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{24}+\frac{S}{2v_2}}=\frac{1}{\frac{1}{24}+\frac{1}{2v_2}}=8km/h\)
\(\Rightarrow\frac{1}{24}+\frac{1}{2v_2}=\frac{1}{8}\)
\(\Rightarrow2v_2=12\)
\(\Rightarrow v_2=6km/h\)
a) Đổi: 30 phút=0,5h
Gọi chiều dài quãng đường từ AB là S
Thời gian đi từ A đến B của ô tô 1 là t1
\(t_1=\dfrac{S}{2.v_1}+\dfrac{S.\left(v_1+v_2\right)}{2v_1v_2}\left(a\right)\)
Gọi thời gian đi từ B đến A của xe 2 là t2. Ta có:
\(S=\dfrac{t_1}{2}.v_1+\dfrac{t_2}{2}.v_2=t_2\dfrac{\left(v_1+v_2\right)}{2}\)( b)
Theo bài ra ta có :\(t_1-t_2=0,5\left(h\right)\)
Thay giá trị của vA ; vB vào ta có S = 60 km.
Thay s vào (a) và (b) ta tính được t1=2h; t2=1,5 h
b) Đặt A bằng M, B bằng N
Gọi t là thời gian mà hai xe đi được từ lúc xuất phát đến khi gặp nhau. Khi đó quãng đường mỗi xe đi được trong thời gian t là:
Hai xe gặp nhau khi : SM + SN=SA+SB=S = 60 và chỉ xảy ra khi \(0,75\le t\le1,5\left(h\right)\) .
Từ điều kiện này ta sử dụng (1) và (4): 20t + 15 + ( t - 0,75) 60 = 60
Giải phương trình này ta tìm được \(t=\dfrac{9}{8}\left(h\right)\) và vị trí hai xe gặp nhau cách B là 37,5km nên cách A là 60km-37,5km=22,5(km)
* Đề câu a hình như là tính v2 bạn nhé, vì v1 đề đã cho biết rồi
________________________________________
a) Thời gian đi của người anh là
\(t_1=\frac{S}{2v_1}+\frac{S}{2v_2}=\frac{S}{2}\left(\frac{1}{v_1}+\frac{1}{v_2}\right)\)
Mà vtb=8 km/h
=> \(\frac{S}{\frac{S}{2}\left(\frac{1}{v_1}+\frac{1}{v_2}\right)}=\frac{2v_1v_2}{v_1+v_2}=8\)
Thay v1=5
=> v2= 20
Mặt khác ta có
\(\frac{AC}{v_1}=\frac{BC}{v_2}=\frac{AC+BC}{5+20}=\frac{S}{25}\)=t' ( Trong đó C là điểm mà người em được bạn chở đi, còn AB là quãng đường từ nhà đến trường)
=> \(v_{tb}=\frac{S}{t'}=\frac{S}{\frac{S}{25}}=25\)( km/h)
ta có:
đối với xe đi từ A:
thời gian người đó đi nửa quãng đường đầu là:
\(t_1=\frac{S_1}{v_1}=\frac{S}{2v_1}=\frac{S}{40}\)
thời gian người đó đi trên nửa quãng đường sau là:
\(t_2=\frac{S_2}{v_2}=\frac{S}{2v_2}=\frac{S}{120}\)
vận tốc trung bình của người đó là:
\(v_{tb1}=\frac{S}{t_1+t_2}=\frac{S}{\frac{S}{40}+\frac{S}{120}}=\frac{1}{\frac{1}{40}+\frac{1}{120}}=30\) km/h
đối với xe đi từ B về A:
ta có:
quãng đường xe đi được trong nửa thời gian đầu là:
S1=v1t1=\(\frac{v_1t}{2}=10t\)
quãng đường xe đi được trong nửa thời gian sau là:
S2=v2t2=\(\frac{v_2t}{2}=30t\)
vận tốc trung bình của xe là:
\(v_{tb2}=\frac{S_1+S_2}{t}=\frac{10t+30t}{t}=40\) km/h
ta lại có:
do cả hai xe đi cùng quãng đường nên:
SA=SB
\(\Leftrightarrow v_{tb1}t_A=v_{tb2}t_B\)
do xe hai đi sau xe một 30' nên:
\(30t_A=40\left(t_A-0,5\right)\)
\(\Rightarrow t_A=2h\)
\(\Rightarrow S_A=S=40km\)
TQ HN > < v1 v2
a) Hai xe chuyển động ngược chiều, nên thời gian gặp nhau là: \(t=\dfrac{S}{v_1+v_2}=\dfrac{200}{45+35}=2,5(h)\)
b) Hai xe cách nhau 10km ta có 2 trường hợp:
TH1: Tổng quãng đường đi của 2 xe là: 200 - 10 = 190 (km)
Thời gian hai xe gặp nhau là: \(t_1=\dfrac{S_1}{v_1+v_2}=\dfrac{190}{45+35}=2,375(h)\)
TH2: Tổng quãng đường đi của hai xe là 200 + 10 = 210 (km)
Thời gian hai xe gặp nhau là: \(t_2=\dfrac{S_2}{v_1+v_2}=\dfrac{210}{45+35}=2,625(h)\)
Vậy: ...
Thời gian đi của ô tô thứ nhất:
\(t_1=\dfrac{s}{2v_1}+\dfrac{s}{2v_2}=\dfrac{s\left(v_1+v_2\right)}{2v_1v_2}\)
Vận tốc trung bình của ô tô thứ nhất:
\(v_{tbA}=\dfrac{s}{t}=\dfrac{2v_1v_2}{v_1+v_2}=\dfrac{2.20.60}{20+60}=30km/h\)
Theo đề ta có: \(s=\dfrac{t_2}{2}v_1+\dfrac{t_2}{2}v_2=t_2\left(\dfrac{v_1+v_2}{2}\right)\)
Vận tốc trung bình của ô tô thứ hai:
\(v_{tbB}=\dfrac{s}{t_2}=\dfrac{v_1+v_2}{2}=\dfrac{20+60}{2}=40km/h\)
Theo đề bài ta có: \(\dfrac{s}{v_A}-\dfrac{s}{v_B}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{s}{30}-\dfrac{s}{40}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{4s}{120}-\dfrac{3s}{120}=\dfrac{60}{120}\)
\(\Leftrightarrow s=60\left(km\right)\)
Vậy hai xe xuất phát cùng lúc sẽ gặp nhau sau:
\(s_1+s_2=s_{AB}\)
\(\Leftrightarrow30t+40t=60\)
\(\Leftrightarrow70t=60\)
\(\Leftrightarrow t=\dfrac{60}{70}\approx0,9\left(h\right)\)
Hai xe gặp nhau tại điểm cách điểm A:
\(s_1=v_A.t=30.0,9=27\left(km\right)\)