Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tìm tần số dao động của con lắc, ta có công thức:
f = 1/T
Trong đó: f là tần số dao động (Hz) T là chu kì dao động (s)
Theo đề bài, khoảng thời gian để vật nhỏ của con lắc có độ lớn gia tốc không vượt quá 100 cm/s là T/3. Độ lớn gia tốc của con lắc được tính bằng công thức:
a = -ω²x
Trong đó: a là gia tốc (cm/s²) ω là góc tốc độ góc của con lắc (rad/s) x là biên độ dao động (cm)
Ta có thể tính được ω bằng công thức:
ω = 2πf
Thay vào công thức gia tốc, ta có:
a = -(2πf)²x = -4π²f²x
Đề bài cho biết gia tốc không vượt quá 100 cm/s, nên ta có:
100 ≥ 4π²f²x
Với x = 5 cm, ta có:
100 ≥ 4π²f²(5)
Simplifying the equation:
5 ≥ π²f²
Từ đó ta có:
f² ≤ 5/π²
f ≤ √(5/π²)
f ≤ √(5/π²) ≈ 0.798 Hz
Vậy tần số dao động của con lắc là khoảng 0.798 Hz.
\(v_{max} = A\omega\)
Dựng đường tròn ứng với vận tốc
0 Aω -Aω 20π -20π φ π/3 M Q P N a b H
Cung tròn ứng với tốc độ của vật không vượt quá \(20\pi (cm/s)\) là \(\stackrel\frown{QaM} = \varphi; \stackrel\frown{NbP}= \varphi\)
=> thời gian để tốc độ (độ lớn của vận tốc) không vượt quá \(20\pi (cm/s)\) là:
\(t = \frac{2\varphi}{\omega} \)
mà giả thiết: \(t = \frac{2T}{3}s\) => \(\frac{2\varphi}{\omega} = \frac{2T}{3}\)
=> \(\varphi = \frac{2T}{3}.\frac{\omega}{2}= \frac{2\pi}{3}\) (do \(\omega = \frac{2\pi}{T}\))
=> \(\widehat{MOH} = \frac{\varphi}{2} = \frac{\pi}{3}\)
Ta có: \(\cos \widehat{MOH} =\frac{1}{2}= \frac{20\pi}{A\omega} \)
=> \(\omega = \frac{2.20\pi}{5} = 8\pi\)
=> \(T = \frac{2\pi}{\omega} =0,25s. \)
Vậy \(T= 0,25s.\)
cung tròn ko vượt quá 20pi thì là góc NOM và góc POQ chứ ??
Đáp án C
Trong một nửa chu kì, khoảng thời gian thế năng không vượt quá ba lần động năng:
Tốc độ trung bình của chất điểm trong khoảng thời gian đó là 3 3 m/s
1