Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với m=2 \(\Rightarrow\) phương trình (1)
\(\Leftrightarrow\) \(x^2-4x+4\) =0
\(\Leftrightarrow x=2\)
#)Giải :
Lấy điểm C tùy ý trên mặt phẳng chứa n điểm, ta có :
\(\overrightarrow{CB_1}+\overrightarrow{CB_2}+...+\overrightarrow{CB_n}=\overrightarrow{CA_1}+\overrightarrow{CA_2}+...+\overrightarrow{CA_n}\)
\(\Rightarrow\left(\overrightarrow{CB_1}-\overrightarrow{CA_1}\right)+\left(\overrightarrow{CB_2}-\overrightarrow{CA_2}\right)+...+\left(\overrightarrow{CB_n}-\overrightarrow{CA_n}\right)=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{A_1B_1}+\overrightarrow{A_2B_2}+...+\overrightarrow{A_nB_n}=\overrightarrow{0}\left(đpcm\right)\)
²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ) : cái đoạn thứ 3 bỏ ngoặc với \(\overrightarrow{0}\) đi nhé !
Thay vào chỗ \(\overrightarrow{0}\)là :
\(=\left(\overrightarrow{CB_1}+\overrightarrow{CB_2}+...+\overrightarrow{CB_n}\right)-\left(\overrightarrow{CA_1}+\overrightarrow{CA_2}+...+\overrightarrow{CA_n}\right)\)
Vì n điểm \(B_1,B_2,....,B_n\)cũng là n điểm \(A_1,A_2,...,A_n\)nhưng được kí hiệu 1 cách khác nên ta có:
\(\overrightarrow{CB_1}+\overrightarrow{CB_2}+...+\overrightarrow{CB_n}=\overrightarrow{CA_1}+\overrightarrow{CA_2}+...+\overrightarrow{CA_n}\)
=> đpcm
ý kiến riêng của tớ =))
Từ biểu thức của số trung bình cộng ta suy ra:
\(na=a_1+a_2+.....+a_n\).
Nếu tất cả các số: \(a_1,a_2,a_3,....,a_n\) đều nhỏ hơn a thì rõ ràng:
\(a_1+a_2+a_3+....+a_n< na.\)
Như vậy đẳng thức \(na=a_1+a_2+.....+a_n\) không xảy ra. ( Mâu thuẫn).
Ta có đpcm.
C là mệnh đề đúng