Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5y^2+3y=-2x^2+8x=8-\left(2x^2-8x+8\right)=8-2\left(x-2\right)^2\le8\)<=> \(5y^2+3y-8\le0< =>\left(5y+8\right)\left(y-1\right)\le0< =>\frac{-8}{5}\le y\le1\)
y nguyên => y = -1; 0; 1
y=-1 => \(2x^2+5-8x-3=0< =>x^2-4x+1=0\)(không có nghiệm x nguyên)
y=0 =>\(2x^2+0-8x-0=0< =>2x^2-8x=0< =>\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
y=1 =>\(2x^2+5-8x+3=0< =>x^2-4x+4=0< =>x=2\)
vậy pt có nghiệm (x;y) = (0;0) (4;0) (2;1)
Tìm nghiệm nguyên của pt: $x^{3}-y^{3}-2y^{2}-3y-1=0$ - Số học - Diễn đàn Toán học
Ta có:
\(x^3-y^3-y^2-3y-1=0\)
\(\Leftrightarrow y^3+2y^2+3y+1=x^3\)
Dễ dàng thấy:
\(\left(y-1\right)^3< y^3+2y^2+3y+1\le\left(y+1\right)^3\)
\(\Leftrightarrow y^3+2y^2+3y+1=\left[\left(y^3\right);\left(y+1\right)^3\right]\)
Làm tiếp nhé