Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3. a) cos (x - 1) = ⇔ x - 1 = ±arccos + k2π
⇔ x = 1 ±arccos + k2π , (k ∈ Z).
b) cos 3x = cos 120 ⇔ 3x = ±120 + k3600 ⇔ x = ±40 + k1200 , (k ∈ Z).
c) Vì = cos nên ⇔ cos() = cos ⇔ = ± + k2π ⇔
d) Sử dụng công thức hạ bậc (suy ra trực tiếp từ công thức nhan đôi) ta có
⇔ ⇔
⇔ ⇔
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
Từ đó suy ra f'(x)=0
a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0
d,f(x)=\(\frac{3}{2}\)=>f'(x)=0
a: \(\Leftrightarrow\tan\left(x-\dfrac{\Pi}{5}\right)=-\cot x=\tan\left(x+\dfrac{\Pi}{2}\right)\)
\(\Leftrightarrow x-\dfrac{\Pi}{5}=x+\dfrac{\Pi}{2}+k\Pi\)
\(\Leftrightarrow k\Pi=-\dfrac{7}{10}\Pi\)
hay k=-7/10(vô lý)
b: \(\Leftrightarrow\cos x=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{3}+k2\Pi\\x=-\dfrac{\Pi}{3}+k2\Pi\end{matrix}\right.\)
Câu 2 bạn coi lại đề
3.
\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)
\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)
\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)
\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm
5.
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)
\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)
\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)
\(\Leftrightarrow2sin^3x-sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)
\(\Leftrightarrow...\)
a: cos3x=8
mà -1<=cos3x<=1
nên \(x\in\varnothing\)
b; \(-2\cdot cosx+\sqrt{3}=0\)
=>\(-2\cdot cosx=-\sqrt{3}\)
=>\(cosx=\dfrac{\sqrt{3}}{2}\)
=>x=pi/6+k2pi hoặc x=-pi/6+k2pi
c: cos(3x-pi/6)=0
=>3x-pi/6=pi/2+k2pi
=>3x=2/3pi+k2pi
=>x=2/9pi+k2pi/3
d: cos(x+2/3pi)=cos(pi/5)
=>x+2/3pi=pi/5+k2pi hoặc x+2/3pi=-pi/5+k2pi
=>x=-7/15pi+k2pi hoặc x=-13/15pi+k2pi
e: cos^2(3x)=4
=>cos3x=2(loại) hoặc cos3x=-2(loại)