giải phương trình sau:
 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 8 2023

1. Đặt $x^2+x=a$ thì pt trở thành:

$a^2+4a=12$
$\Leftrightarrow a^2+4a-12=0$

$\Leftrightarrow  (a-2)(a+6)=0$

$\Leftrightarrow a-2=0$ hoặc $x+6=0$

$\Leftrightarrow x^2+x-2=0$ hoặc $x^2+x+6=0$

Dễ thấy $x^2+x+6=0$ vô nghiệm.

$\Rightarrow x^2+x-2=0$

$\Leftrightarrow (x-1)(x+2)=0$

$\Leftrightarrow x=1$ hoặc $x=-2$

AH
Akai Haruma
Giáo viên
24 tháng 8 2023

2.

$x(x-1)(x+1)(x+2)=24$
$\Leftrightarrow [x(x+1)][(x-1)(x+2)]=24$

$\Leftrightarrow (x^2+x)(x^2+x-2)=24$

$\Leftrightarrow a(a-2)=24$ (đặt $x^2+x=a$)

$\Leftrightarrow a^2-2a-24=0$

$\Leftrightarrow (a+4)(a-6)=0$

$\Leftrightarrow a+4=0$ hoặc $a-6=0$

$\Leftrightarrow x^2+x+4=0$ hoặc $x^2+x-6=0$

Nếu $x^2+x+4=0$

$\Leftrightarrow (x+\frac{1}{2})^2=\frac{1}{4}-4<0$ (vô lý - loại)

Nếu $x^2+x-6=0$

$\Leftrightarrow (x-2)(x+3)=0$

$\Leftrightarrow x-2=0$ hoặc $x+3=0$
$\Leftrightarrow x=2$ hoặc $x=-3$

24 tháng 3 2020

dài lắm nên mình làm tắt

1) (x - 5)^2 + (x + 3)^2 = 2(x - 4)(x + 4) - 5x + 7

<=> x^2 - 10x + 25 + x^2 + 6x + 9 = 2x^2 + 8x - 8x - 32 - 5x + 7

<=> 2x^2 - 4x + 34 = 2x^2 - 5x - 25

<=> -4x + 34 = -5x - 25

<=> x + 34 = -25

<=> x = -25 - 34

<=> x = - 59

2) (x + 3)(x - 2) - 2(x + 1)^2 = (x - 3)^2 - 2x^2 + 4x

<=> x^2 - 2x + 3x - 6 - 2x^2 - 4x - 2 = x^2 - 6x + 9 - 2x^2 + 4x

<=> -x^2 - 3x - 8 = -x^2 - 2x + 9

<=> -3x - 8 = -2x + 9

<=> -x - 8 = 9

<=> -x = 9 + 8

<=> x = -17

3) (x + 1)^3 - (x + 2)(x - 4) = (x - 2)(x^2 + 2x + 4) + 2x^2

<=> x^3 + 2x^3 + x + x^2 + 2x + 1 - x^2 + 4x - 2x + 8 = x^3 + 2x^2 + 4x - 2x^2 - 4x - 8 + 2x^2

<=> 2x^2 + 5x + 9 = 2x^2 - 8

<=> 5x + 9 = -8

<=> 5x = -8 - 9

<=> 5x = -17

<=> x = -17/5

4) (x - 2)^3 + (x - 5)(x + 5) = x(x^2 - 5x) - 7x + 3

<=> x^3 - 4x^2 + 4x - 2x^2 + 8x - 8 + x^2 - 5^2 = x^3 - 5x^2 - 7x + 3

<=> 12x - 33 = -7x + 3

<=> 19x - 33 = 3

<=> 19x = 3 + 33

<=> 19x = 36

<=> x = 36/19

5) (x + 4)(x^2 - 4x + 16) - x(x - 4)^2 = 8(x - 3)(x + 3)

<=> x^3 - 4x^2 + 16x + 4x^2 - 16x + 64 - x^3 + 8x^2 - 16x = 8x^2 - 72

<=> -16x + 64 = -72

<=> -16x = -72 - 64

<=> -16x = -136

<=> x = 136/16 = 17/2

6) 4(x - 1)(x + 2) - 5(x + 7) = (2x + 3)^2 - 5x + 3

<=> 4x^2 + 8x - 4x - 8 - 5x - 35 = 4x^2 + 12x + 9 - 5x + 3

<=> -x - 43 = 7x + 12

<=> -8x - 43 = 12

<=> -8x = 12 + 43

<=> -8x = 55

<=> x = -55/8

7) (x - 1)(x^2 + x + 1) + 3(x - 2)^2 = x(x^2 + 3x - 1)

<=> x^3 + x^2 + x - x^2 - x - 1 + 3x^2 - 12x + 12 = x^3 + 3x^2 - x

<=> 3x^2 - 12x + 11 = 3x^2 - x

<=> -12x + 11 = -x

<=> 11 = -x + 12x

<=> 11 = 11x

<=> x = 1

8) (x + 5)(x - 5) - (x + 3)(x^2 - 3x + 9) = 5 - x(x^2 - x - 2)

<=> x^2 - 25 - x^3 + 3x^2 - 9 - 3x^2 + 9x - 27 = 5 - x^3 + x^2 + 2x

<=> -52 - x^3 = 5 - x^3 + 2x

<=> -52 = 5x + 2x

<=> -5x - 2x = 52

<=> -7x = 52

<=> x = -52/7

9) (x + 2)^2 - 2(x + 3)(x - 4) = 5 - x(x - 3)

<=> x^2 + 4x + 4 - 2x^2 + 8x - 6x + 24 = 5 - x^3 + 3x

<=> 6x + 28 = 5 + 3x

<=> 6x + 28 - 3x = 5

<=> 3x + 28 = 5

<=> 3x = 5 - 28

<=> 3x = -23

<=> x = -23/3

10)  (x + 7)(x - 7) - (x + 2)^2 = 5(x - 2) + (x - 7)

<=> x^2 - 49 - x^2 - 4x - 4 = 5x - 10 + x - 7

<=> -53 - 4x = 6x - 17

<=> -4x = 6x + 36

<=> -4x - 6x = 36

<=> -10x = 36

<=> x = -36/10 = -18/5

28 tháng 9 2019

Lời giải của bạn Thái và Hà chưa hợp lý, còn lời giải của bạn An hợp lý, vì :

  • Hai bạn Thái và Hà phân tích đa thức thành nhân tử chưa triệt để, vì ở lời giải của hai bạn, có nhân tử vẫn phân tích được tiếp.
  • Còn ở bạn An thì phân tích đã hợp lý, vì trong các nhân tử, không có nhân tử nào phân tích được tiếp.
14 tháng 3 2016

bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1

bài 2: =(x-3)2+1

vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3

10 tháng 7 2017

Theo đề bài ta có :

\(\frac{x\left(3-x\right)}{x+1}\cdot\left(x+\frac{\left(3-x\right)}{x+1}\right)=2\)

=> \(\frac{\left(3x-x^2\right)}{x+1}\cdot\frac{\left(3-x+x^2+x\right)}{x+1}=2\)

=> \(\left(3x-x^2\right)\left(x^2+3\right)=2\left(x+1\right)^2\)

=> \(3x^3+9x-x^4-3x^2=2x^2+4x+2\)

=> \(3x^3+\left(9x-4x\right)+\left(-3x^2-2x^2\right)-x^4-2=0\)

=> \(3x^3+5x-5x^2-x^4-2=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x^3-1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)+2\left(x-1\right)\left(x^2+x+1\right)=0\)

=> \(5x\left(1-x\right)+x^3\left(1-x\right)-2\left(1-x\right)\left(x^2+x+1\right)=0\)

=> \(\left(1-x\right)\left(5x+x^3-2x^2-2x-2\right)=0\)

=> \(\left(1-x\right)\left(3x+x^3-2x^2-2\right)=0\)

=> \(\left(1-x\right)\left(x^3-x^2-x^2+x+2x-2\right)=0\)

=> \(\left(1-x\right)\left(x^2\left(x-1\right)-x\left(x-1\right)+2\left(x-1\right)\right)=0\)

=> \(\left(1-x\right)\left(x-1\right)\left(x^2-x+2\right)=0\)

Ta Thấy :

\(\left(x^2-x+2\right)=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

=> \(\hept{\begin{cases}1-x=0\\x-1=0\end{cases}}\)

=> x = 1