Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy 1/1.2.3 = 1/2.3; 1/1.2.3.4 < 1/3.4; 1/1.2.3.4.5 < 1/4.5; 1/1.2.3...n < 1/n(n-1)
=> 1 + 1/1.2 + 1/1.2.3 +... + 1/1.2.3...n < 1 + 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/n(n-1)
=> 1 + 1/1.2 + 1/1.2.3 +... + 1/1.2.3...n < 1 + 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/n-1 - 1/n
=>1 + 1/1.2 + 1/1.2.3 +... + 1/1.2.3...n < 2 - 1/n < 2
=> đpcm
đặt A=1/1.2.3+1/2.3.4+..+1/18.19.20
=1/2(2/1.2.3+1/2.3.4+...+1/18.19.20)
=1/2.(1/1.2-1/2.3+1/2.3-1/3.4+...+1/18.19-1/19.20)
=1/2(1/1.2-1/19.20)
=1/2.1/20
=1/40
Mà 1/40<1/4
=>A<1/4
=
bạn ơi hình như đề bài là:
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\)thì phải ha.