Chứng minh biểu thức : B=x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B=x^2-12x+6^2-8

=(x-6)^2-8

Biểu thức này ko thể luôn dương nha bạn

6 tháng 8 2016

phân tích n^3 + 3n^2 + 2n thảnh n.(n+1).(n+2) chia hết cho 6 vì chia hết cho 2 và 3                                                                                chia hết cho 15 là chia hết cho 3 với 5 nha

6 tháng 8 2016

2) a=-(b+c)=> a2=(-(b+c))2

a2-b2-c2=2bc

(a2-b2-c2)2=(2bc)2

a4+b4+c4-2a2b2+2b2c2-2a2c2=4b2c2

a4+b4+c4=2a2b2+2b2c2+2a2c2

2(a4+b4+c4)=(a2+b2+c2)2

Vì a2+b2+c2=14 nên 2(a4+b4+c4)=196

=>a4+b4+c4=98

14 tháng 3 2016

bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1

bài 2: =(x-3)2+1

vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3

25 tháng 5 2017

A = x(x - 6) + 10

A = x2 - 6x + 10

A = x2 - 2.3.x + 32 + 1

A = (x - 3)2 + 1 \(\ge1\)

=> A luôn dương

25 tháng 5 2017

Bạn Kurosaki Akatsu làm ý a đúng rồi đấy!

B = x2 - 2x + 9y2 - 6y + 3

   = (x2 - 2x + 1) + (9y2 - 6y + 1) + 1

   = (x - 1)2 +  [ (3y)2 - 2.3y.1 + 12)] + 1

   = (x - 1)2 + (3y - 1)2 + 1

Vì (x - 1)2 và (3y - 1)luôn lớn hơn hoặc bằng 0 với mọi x, y

=> (x - 1)2 + (3y - 1)2 + 1 > 0 với mọi xy

  Vậy biểu thức luôn dương

   

\(A=x^2-6x+2019\)

\(\Rightarrow A=x^2-6x+9+2010\)

\(\Rightarrow A=x^2+2\times3\times x+3^2+2010\)

\(\Rightarrow\left(x-3\right)^2+2010\)

Ta có:\(0\le\left(x-3\right)^2\Rightarrow2010\le\left(x-3\right)^2+2010\)

Vậy A luôn nhận giá trị dương với mọi x

30 tháng 7 2019

bạn có thể giúp mik giải thêm một bài nữa đc k

14 tháng 7 2018

a)  \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)       với mọi x

b)   \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x

c)  \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)  với mọi x,y

d)  bạn kiểm tra lại đề câu d) nhé:

 \(x^2+4y^2+z^2-2x-6y+8z+15\)

\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)

14 tháng 7 2018

Đề câu d đúng mà!

26 tháng 7 2021

\(a,9x^2-6x+2\)

\(\left(3x-1\right)^2+1\ge1>0\)

vậy pt luôn dương

\(b,x^2+x+1\)

\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

vậy pt luôn dương

\(c,2x^2+2x+1\)

\(\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)

vậy pt luôn dương

26 tháng 7 2021

Trả lời:

a, \(9x^2-6x+2=\left(3x\right)^2-2.3x.1+1+1=\left(3x-1\right)^2+1\ge1>0\forall0\)

Dấu "=" xảy ra khi 3x - 1 = 0 <=> x = 1/3

Vậy bt luôn dương với mọi x

b, \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

Dấu "=" xảy ra khi x + 1/2 = 0 <=> x = - 1/2

Vậy bt luôn dương với mọi x

c, \(2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)\)

\(=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\right]=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\forall x\)

Dấu "=" xảy ra khi x + 1/2 = - 1/2

Vậy bt luôn dương với mọi x