cho tỉ lệ thức a/b=c/d chứng minh (a+b/c+d)^2=a^2+b^2/c^2+d^2

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

Có \(\frac{a}{b}=\frac{c}{d}=\frac{a}{c}=\frac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2\)

\(=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\)

Có \(\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Theo dãy tính chất tỉ số bằng nhau ta có :

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

Từ (1) và (2) = \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

24 tháng 5 2015

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=>\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng dãy tỉ số = nhau ta có : \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

24 tháng 5 2015

phần b làm tương tự bạn ạ!!!

31 tháng 8 2021

Giải:

Từ \(\frac{ab}{bc}=\frac{b}{c}\left(c\ne0\right)\Rightarrow\frac{ab}{b}=\frac{bc}{c}\left(a,b,c>0\right)\Rightarrow\frac{a}{b}=\frac{b}{c}\)

Tỉ lệ thức \(\frac{a}{b}=\frac{b}{c}\)hay \(ac=b^2\). Ta có: \(\left(a^2+b^2\right)c=\left(a^2+ac\right)=a^2c+ac^2\)

Tương tự có: \(\left(b^2+c^2\right)a=a^2c+ac^2\)

\(\Rightarrow\left(a^2+b^2\right)c=\left(b^2+c^2\right)a\)hay \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)

1) Áp dụng tính chất của dãy tỉ số = nhau ta có:

ab/bc=b/c=ab−b/bc−c=(10a+b)−b/(10b+c)−c=10a/10b=a/b

⇒a^2/b^2=b^2/c^2=ab/bc=a/c(1)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

a^2/b^2=2=b^2/c^2=a^2+b^2/b^2+c^2(2)

Từ (1) và (2) ⇒a^2+b^2/b^2+c^2=a/c(đpcm)

16 tháng 8 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{\left(b^2.k^2\right)+\left(d^2.k^2\right)}{b^2+d^2}\)

\(=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)(1)

và \(\frac{ab}{cd}=\frac{bk.dk}{b.d}=k^2\)(2)

Từ (1) và (2) => \(\frac{a^2+c^2}{b^2+d^2}=\frac{ac}{bd}\)(đpcm)

10 tháng 7 2021

¿??????¿¿¿¿

9 tháng 2 2016

\(1.\)  \(\left(a+2\right)\left(a+3\right)\left(a^2+a+6\right)+4a^2=\left(a^2+5a+6\right)\left(a^2+a+6\right)+4a^2\)

Đặt  \(t=a^2+3a+6\)  , ta được:

\(\left(t+2a\right)\left(t-2a\right)+4a^2=t^2-4a^2+4a^2=t^2=\left(a^2+3a+6\right)^2\)

8 tháng 2 2016

bài 1:

(a^2+3a+6)^2

16 tháng 10 2015

a+b=c+d

(a+b)2=(c+d)2

a2+2ab+b2=c2+2cd+d2

ma a2+b2=c2+d2

2ab=2cd nen -2ab=-2cd

a2+b2=c2+d2

a2-2ab+b2=c2-2cd+d2

(a-b)2=(c-d)2

a-b=c-d hoac a-b=d-c

ma a+b=c+d

nen a=c hoac a=d

nen a=c;b=d hoac a=d;b=c

nen a2013=c2013;b2013=d2013 hoac a2013=d2013;b2013=c2013

Vay a2013+b2013=c2013+d2013 trong ca 2 truong hop

QUA DE

30 tháng 9 2018

Câu 4 : 

       Ta có : a+b+c=0

​​=> a+b=-c

Lại có : a3+b3=(a+b)3-3ab(a+b)

=> a3+b3+c3=(a+b)3-3ab(a+b)+c3

                    =-c3-3ab. (-c)+c3

                    =3abc

Vậy a3+b3+c3=3abc với a+b+c=0