Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔNEI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNEI vuông tại E
hay NE⊥MI
Xét (O) có
ΔNDI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNDI vuông tại D
hay ID⊥MN
b: Xét ΔMNI có
ID là đường cao ứng với cạnh MN
NE là đường cao ứng với cạnh MI
NE cắt ID tại H
Do đó: MH⊥NI
a: Xét (O) có
ΔNEI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNEI vuông tại E
Xét (O) có
ΔNDI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNDI vuông tại D
\(a,\)Gọi tâm đường tròn đường kính NI là O
Ta có \(OE=OD=ON=OI\left(=R\right)=\dfrac{1}{2}IN\)
\(\Rightarrow\Delta INE,\Delta IND\) lần lượt vuông tại \(E,D\)
\(\Rightarrow NE\perp MI,ID\perp MN\)
\(b,\) Tam giác MNI có NE, ID là đường cao; H là giao điểm NE và ID nên H là trực tâm
\(\Rightarrow MH\) là đường cao thứ 3
\(\Rightarrow MH\perp NI\)
Câu 1:
a: Xét (\(\dfrac{NI}{2}\)) có
ΔNEI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNEI vuông tại E
Xét \(\left(\dfrac{NI}{2}\right)\) có
ΔNDI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNDI vuông tại D
b: Xét ΔMNI có
NE là đường cao ứng với cạnh MI
ID là đường cao ứng với cạnh MN
NE cắt ID tại H
Do đó: MH\(\perp\)NI
a/ Ta có CF vuông góc AB tại F (gt)
Nên góc CFB = 90 độ
BE vuông góc AC tại E
Nên góc BEC = 90 độ
Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt
Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .
góc BEC = 90 độ (cmt)
Nên tam giác BEC vuông tại E
Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .
Cho 3 số thực dương a;b;c thỏa mãn : a+ b + c = 1 . CMR
\(\frac{a+1}{a+b+c}+\frac{b+1}{b+ac}+\frac{c+1}{c+ab}\ge9\)Dấu " = " xay ra khi nào
a: Xét (O) có
ΔNEI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNEI vuông tại E
Xét (O) có
ΔNDI nội tiếp đường tròn
NI là đường kính
Do đó: ΔNDI vuông tại D
HT , đúng thì k nhé