Cho tam giác ABC vuông tại A, trên tia đối của tia AB lấy điểm D sao cho AB = AD.<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2023

loading...  

a) Xét hai tam giác vuông: ∆ABC và ∆ADC có:

AC chung

AB = AD (gt)

⇒ ∆ABC = ∆ADC (hai cạnh góc vuông)

b) Do ∆ABC = ∆ADC (cmt)

⇒ ∠BCA = ∠DCA (hai góc tương ứng)

⇒ CA là tia phân giác của ∠BCD

loading...  loading...  

16 tháng 1 2019

a,Xét ABM và ACM

AB=AC , AM chung , BM=MC(Do M là trung điểm của BC)

ABM = ACM

BAM = CAM                                                               (1)

Mà AM nằm giữa AB và AC ( Do M nằm giữa B và C) (2)

Từ (1) và (2)

AM là tia phân giác của BAC

16 tháng 1 2019

b,Xét BNC và DNC

NC chung , CB = CD 

Góc BCN = DCN

Tam giác:BNC = DNC

Góc BNC = DCN 

Mà BNC + DCN = 180

BNC = 90

CN vuông góc với BD

Bài 2: 

Xét ΔADO vuông tại D và ΔAEO vuông tại E có

AO chung

\(\widehat{DAO}=\widehat{EAO}\)

Do đó: ΔADO=ΔAEO

Suy ra: OD=OE

Bài 3: 

Xét ΔABE và ΔACD có 

AB=AC
\(\widehat{A}\) chung

AE=AD
Do đó: ΔABE=ΔACD

Suy ra: BE=CD

11 tháng 3 2016

Ta có AB=\(\frac{1}{2}\) BC =>BC = 2 AB. Tam giác ABC vuông tại A nên

AB+ AC2 = BC

AB2+ AC2 =(2AB)

AB2+AC2 =4AB

       AC2 = 4AB2 -AB2 

         AC2 = 3AB2

=> AC = \(\sqrt{3}\)AB

10 tháng 7 2017

a) xét tam giác ABD và tam giác ACD có

AB=AC,AD là cạnh chung góc BAD= góc DAC

vậy tam giác ABD=tam giác ACD(C.g.c)

Suy ra gócADB=gócADC=1/2BDC=1/2*180=90

Hay AD vuông góc với BC

28 tháng 1 2019

tu ve hinh :

a, xet tamgiac MBA va tamgiac MDC co :

goc BMA = goc DMC (doi dinh)

BM = CM do M la trung diem cua BC (GT)

MA = MD (GT)

=> tamgiac MBA = tamgiac MDC (c - g - c)

=> AB = DC (dn) 

tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt

=> AB // CD (dh)

b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)

=> AC | DC (dl) => tamgiac ACD vuong tai C (dn) 

tamgiac MBA = tamgiac MDC => AB = CD (dn)

goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C

xet tamgiac ACB va tamgiac CAD co AC chung

=> tamgiac ACB = tamgiac CAD (2cgv)

=> BC = AD (dn)

M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)

=> AM = BC/2

12 tháng 11 2017

Xét tam giác BAC (góc BAC = 90) và tam giác BAD (góc BAD = 90), ta có: 

AB chung 

AD = AC ( gt)

=> tam giác ABD = ABC

=> BD = BC ; DBA = ABC

Tương tự ta có : Tam giác MBD =MBC (c.g.c)

ta có : CABˆCAB^ + DABˆDAB^ = 18001800 ( 2 góc kề bù )

=> 900900 + DABˆDAB^ = 18001800

=> DABˆDAB^ = 900900

Xét △ABC và △ABD có:

AD = AC ( gt )

CABˆCAB^ = DABˆDAB^ = 900900

AB cạnh chung

=> △ABC = △ABD ( c-g-c )

=> DB = CB ; ABDˆABD^ = ABCˆABC^ <=> MBDˆMBD^ = MBCˆMBC^

b ) Xét △MBD và △MBC có :

MADˆMAD^ = MBCˆMBC^ ( cmt )

DB = DC ( cmt )

MB cạnh chung

=> △MBD = △MBC ( c-g-c ).

28 tháng 1 2020

Tam giác ABC cân tại A 

=> Góc ABC = góc ACB (hai góc kề một đáy)

Xét tam giác ABD có AB = AD (= AC)

=> Tam giác ABD cân tại A

=> Góc ABD = góc ADB (hai góc kề một đáy).

Vì góc ACB + góc ABC + góc ABD + góc ADB = 180 độ ( tổng ba góc trong tam giác DBC)

Do vậy góc DBC = 90 độ

Vậy tam giác BCD là tam giác vuông vì có góc DBC + 90 độ.

25 tháng 2 2020

Tam giác ABC cân tại A 
=> Góc ABC = góc ACB (hai góc kề một đáy)
Xét tam giác ABD có AB = AD (= AC)
=> Tam giác ABD cân tại A
=> Góc ABD = góc ADB (hai góc kề một đáy).
Vì góc ACB + góc ABC + góc ABD + góc ADB = 180 độ ( tổng ba góc trong tam giác DBC)
Do vậy góc DBC = 90 độ
=>tam giác BCD là tam giác vuông vì có góc DBC =90 độ.

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
28 tháng 3 2018

x=2009

28 tháng 5 2018

a) Xét \(\Delta\)ABC có: BC > AC > AB ( vì 10 > 8 > 6)

=> \(\widehat{A}>\widehat{B}>\widehat{C}\)

Ta có: BC2 = AB2 + AC2 (vì 102 = 62 + 82)

=> \(\Delta ABC\)vuông tại A

=> \(\widehat{A}=90^0\)

Vậy  \(\widehat{A}>\widehat{B}>\widehat{C}\)và \(\widehat{A}=90^0\).

Phần b) c) d) bạn tham khảo tại đây nhé : https://olm.vn/hoi-dap/question/1216956.html