Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé
a) Vì AB = AC => tam giác ABC cân tại A
Xét tam giác ABM và ACM có \(\hept{\begin{cases}AB=AC\\AM\\BM=MC\end{cases}chung}\)
=>\(\Delta ABM=\Delta ACM\)( c.c.c) ( đpcm)
b) Theo a) có \(\Delta ABM=\Delta ACM\) =.> \(\widehat{BAM}=\widehat{CAM}\)
=> AK là tia phân giác ....
c)Xét tam giác BEC và tam giác CEB có
BD = CE ( vì AB = AC mà AD=AE)
góc ABC=góc ACB (tam giác cân)
BC chung
=> tam giác ....= tam giác....(c.g.c)
=> góc EBC = góc DCB
=> tam giác BCK cân tại K
=> BK=KC
Xét tam giác AKB và tam giác AKC có
AB=AC
AK chung
BK=KC
=> tam giác ...=tam giác...(C.C.C)
=> \(\widehat{BAK}=\widehat{CAK}\)
=> AK là tia phân giác góc ABC\(\)(1)
Mà AM là phân giác góc ABC(2)
Từ (1) và (2) => A,M,K thẳng hàng
tu ve hinh :
a, xet tamgiac MBA va tamgiac MDC co :
goc BMA = goc DMC (doi dinh)
BM = CM do M la trung diem cua BC (GT)
MA = MD (GT)
=> tamgiac MBA = tamgiac MDC (c - g - c)
=> AB = DC (dn)
tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt
=> AB // CD (dh)
b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)
=> AC | DC (dl) => tamgiac ACD vuong tai C (dn)
tamgiac MBA = tamgiac MDC => AB = CD (dn)
goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C
xet tamgiac ACB va tamgiac CAD co AC chung
=> tamgiac ACB = tamgiac CAD (2cgv)
=> BC = AD (dn)
M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)
=> AM = BC/2
a) Xét tam giác ABM và tam giác ACM, ta có:
AB=AC(gt)
BM=CM(gt)
AM: cạnh chung
Do đó: tam giác ABM = tam giác ACM(c.c.c)
Vậy: Góc AMB = Góc AMC
Mà góc AMB + góc AMC = 180 độ =>
Góc AMB = Góc ACM = 180 độ / 2 = 90 độ
Vậy AM vuông góc với BC
b) Xét tam giác AMD và tam giác AME, ta có:
AD=AE (gt)
Góc DAM = Góc EAM ( theo câu a, cặp góc tương ứng )
AM: cạnh chung
Do đó: Tam giác AMD = tam giác AME (c.g.c)
c) Ta thấy: Góc EDM + Góc KDM = 180 độ ( kề bù )
Vậy ba điểm D,E,K thẳng hàng
=> tam giác ABC cân tại A
Xét ABM và ACM có:
AM chung
AB = AC
A1 = A2 (tam giác ABC cân tại A)
Vậy tam giác ABM = ACM
M1 = M2 ; M1 + M2 = 180 (2 góc kề bù)
=> M1 = M2 = 90
=> AM vuông góc BC
a: ΔABC cân tại A
=>AB=AC
mà AB=8
nên AC=8
Xét ΔDAB có
E,M lần lượt là trung điểm của DA,DB
=>EM là đường trung bình của ΔDAB
=>EM//AB và \(EM=\dfrac{AB}{2}=4\)
Xét ΔDBC có
M,F lần lượt là trung điểm của DB,DC
=>MF là đường trung bình của ΔDBC
=>MF//BC và \(MF=\dfrac{BC}{2}=\dfrac{9}{2}=4,5\)
AD+DC=AC
=>2*ED+2*DF=AC
=>AC=2EF
=>\(EF=\dfrac{AC}{2}=4\)
Chu vi tam giác MEF là:
\(C_{MEF}=EF+EM+MF=4+4+4,5=12,5\)
b: \(\dfrac{AB+AD}{2}=\dfrac{AC+AD}{2}=\dfrac{AD+DC+AD}{2}\)
\(=\dfrac{2AD+2DF}{2}=AD+DF=AF\)