Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(x^{27}+x^{24}+x^{21}+x^{18}+x^{15}+x^{12}+x^9+x^6+x^3+1\)
\(=\left(x^{27}+x^{21}+x^{15}+x^9+x^3\right)+\left(x^{24}+x^{18}+x^{12}+x^6+1\right)\)
\(=x^3\left(x^{24}+x^{18}+x^{12}+x^6+1\right)+\left(x^{24}+x^{18}+x^{12}+x^6+1\right)\)
\(=\left(x^3+1\right)\left(x^{24}+x^{18}+x^{12}+x^6+1\right)\)
Vậy ta có
\(VT=\dfrac{x^{24}+x^{18}+x^{12}+x^6+1}{\left(x^3+1\right)\left(x^{24}+x^{18}+x^{12}+x^6+1\right)}=\dfrac{1}{x^3+1}\) (đpcm)
\(\Leftrightarrow\frac{\frac{x-3+5}{5}}{4}=\frac{\frac{4x-3}{6}}{6}\Leftrightarrow\frac{x+2}{20}=\frac{4x-3}{36}\Leftrightarrow36x+72=80x-60\Leftrightarrow44x=132\Rightarrow x=2\)
\(\Leftrightarrow\frac{\frac{10x+x+2}{2}}{9}-\frac{\frac{x+3+75}{5}}{12}=x-2\)\(\Leftrightarrow\frac{11x+2}{18}-\frac{x+78}{60}=x-2\)\(\Leftrightarrow\left(\frac{11}{18}-\frac{1}{60}-1\right)x+\left(\frac{2}{18}-\frac{78}{60}+2\right)=0\).Giải típ nha, ko có Casio nên mk ko bấm
a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne\pm2\\x\ne0\end{matrix}\right.\)
Ta có : \(\frac{x-4}{x\left(x+2\right)}-\frac{1}{x\left(x-2\right)}=-\frac{2}{\left(x+2\right)\left(x-2\right)}\)
=> \(\frac{\left(x-4\right)\left(x-2\right)}{x\left(x+2\right)\left(x-2\right)}-\frac{x+2}{x\left(x-2\right)\left(x+2\right)}=-\frac{2x}{x\left(x+2\right)\left(x-2\right)}\)
=> \(\left(x-4\right)\left(x-2\right)-x-2=-2x\)
=> \(x^2-4x-2x+8-x-2=-2x\)
=> \(x^2-5x+6=0\)
=> \(\left(x-2\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}x=2\\x=3\left(TM\right)\end{matrix}\right.\)
=> x = 3 .
Vậy phương trình trên có tập nghiệm là \(S=\left\{3\right\}\)
b, ĐKXĐ : \(x\ne0,-3,-6,-9,-12\)
Ta có : \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}+\frac{1}{\left(x+9\right)\left(x+12\right)}=\frac{1}{16}\)
=> \(\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}+\frac{1}{x+9}-\frac{1}{x+12}=\frac{1}{16}\)
=> \(\frac{1}{x}-\frac{1}{x+12}=\frac{1}{16}\)
=> \(\frac{x+12}{x\left(x+12\right)}-\frac{x}{x\left(x+12\right)}=\frac{1}{16}\)
=> \(x\left(x+12\right)=192\)
=> \(x^2+12x-192=0\)
=> \(x^2+2x.6+36-228=0\)
=> \(\left(x+6\right)^2=288\)
=> \(\left[{}\begin{matrix}x=\sqrt{288}-6\\x=-\sqrt{288}-6\end{matrix}\right.\) ( TM )
Vậy phương trình có tập nghiệm là \(S=\left\{\pm\sqrt{288}-6\right\}\)
a: \(=-\dfrac{1}{x\left(x-1\right)}+\dfrac{-1}{\left(x-1\right)\left(x-2\right)}+\dfrac{-1}{\left(x-2\right)\left(x-3\right)}+...+-\dfrac{1}{\left(x-4\right)\left(x-5\right)}+\dfrac{1}{x-5}\)
\(=\dfrac{1}{x}-\dfrac{1}{x-1}+\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+...+\dfrac{1}{x-4}-\dfrac{1}{x-5}+\dfrac{1}{x-5}\)
=1/x
b: \(=\dfrac{1}{x}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+9}+\dfrac{1}{x+9}\)
=1/x
\(\Leftrightarrow\dfrac{3}{x\left(x+3\right)}+\dfrac{3}{\left(x+3\right)\left(x+6\right)}+...+\dfrac{3}{\left(x+9\right)\left(x+12\right)}=\dfrac{3}{16}\)
=>\(\dfrac{1}{x}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+6}+...+\dfrac{1}{x+9}-\dfrac{1}{x+12}=\dfrac{3}{16}\)=>\(\dfrac{1}{x}-\dfrac{1}{x+12}=\dfrac{3}{16}\)
=>\(\dfrac{x+12-x}{x\left(x+12\right)}=\dfrac{3}{16}\)
=>12/x(x+12)=3/16
=>4/x(x+12)=1/16
=>x(x+12)=64
=>x^2+12x-64=0
=>x^2+16x-4x-64=0
=>(x+16)(x-4)=0
=>x=4 hoặc x=-16