Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)121212/424242=2/7
1999999999/9999999995=1/5
Sorry bạn mik chỉ bt làm câu a thôi!
HT~
Câu b:
\(\frac{a}{b}:\frac{c}{d}=\frac{ad}{bc}=\frac{6}{5}\Leftrightarrow5ad=6bc\)
\(\frac{a}{b}-\frac{c}{d}=\frac{ad-bc}{bd}=\frac{1}{15}\Leftrightarrow5\left(ad-bc\right)=\frac{bd}{3}\)
\(\Rightarrow5ad-5bc=\frac{bd}{3}\)
Thay vào ta có:
\(\frac{a}{b}-\frac{c}{d}=\frac{a}{b}-\frac{1}{3}=\frac{1}{15}\Leftrightarrow\frac{a}{b}=-\frac{4}{15}\)
Có \(P=\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times...\times\frac{399}{400}< \frac{2}{3}\times\frac{4}{5}\times...\times\frac{400}{401}\)
=> \(P^2< \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{400}{401}=\frac{1}{401}< \frac{1}{400}=\frac{1}{20}\)
=> \(P< \frac{1}{20}\)(đpcm).
a) Chứng tỏ A không phải là số nguyên
Cho: \(A=1-\frac{3}{4}+\left(\frac{3}{4}\right)^2-\left(\frac{3}{4}\right)^3+\left(\frac{3}{4}\right)^4-.......-\left(\frac{3}{4}\right)^{2009}+\left(\frac{3}{4}\right)^{2010}\)
Đây là đề bài câu a nha các bn
Do bị lỗi nên đây là là câu a nha các bn