Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x+2022\right)⋮\left(x+5\right)\)
\(\Leftrightarrow\left(x+5\right)+2017⋮\left(x+5\right)\)
\(\Leftrightarrow2017⋮\left(x+5\right)\)
Vì \(x\in Z\) nên \(\left(x+5\right)\inƯ\left(2017\right)=\left\{\pm1;\pm2017\right\}\)
Ta có bảng sau:
x+5 | 1 | -1 | 2017 | -2017 |
x | -4 | -6 | 2012 | -2022 |
Vậy \(x\in\left\{-4,-6,2012,-2022\right\}\)
\(\left(x-6\right)^{2020}+2\left(y-3\right)^{2020}=0\)
Ta có : \(\left(x-6\right)^{2020}\ge0\forall x\)
\(2\left(y+3\right)^{2020}\ge0\forall y\)
=>\(\left(x-6\right)^{2020}+2\left(y+3\right)^{2020}\ge0\forall x,y\)
Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}x-6=0\\y+3=0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=6\\y=-3\end{matrix}\right.\)
a) Ta có : \(\frac{-2}{x}=\frac{y}{3}\Leftrightarrow xy=-6\)
Vì x < 0 < y nên
x | -6 | -1 | -2 | -3 |
y | 1 | 6 | 3 | 2 |
b) Ta có : \(\frac{x-3}{y-2}=\frac{3}{2}\)
\(\Leftrightarrow2\left(x-3\right)=3\left(y-2\right)\)
\(\Leftrightarrow2x-6=3y-6\)
\(\Leftrightarrow2x=3y\)
Mà x - y = 4 => x = 4 + y,do đó \(2\left(4+y\right)=3y\)
=> 8 + 2y = 3y
=> 3y - 2y = 8
=> y = 8
Thay y = 8 vào x - y = 4 ta có :
x - 8 = 4 => x = 4 + 8 = 12
Vậy x = 12,y = 8
\(x-2019+\frac{x-2020}{2}=\frac{x-2021}{3}+\frac{x-2022}{4}\)
\(\Rightarrow x-2019+1+\frac{x-2020}{2}+1=\frac{x-2021}{3}+1+\frac{x-2022}{4}+1\)
\(\Rightarrow x-2018+\frac{x-2020+2}{2}=\frac{x-2021+3}{3}+\frac{x-2022+4}{4}\)
\(\Rightarrow x-2018+\frac{x-2018}{2}-\frac{x-2018}{3}-\frac{x-2018}{4}=0\)
\(\Rightarrow\left(x-2018\right)\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)=0\)
\(\Rightarrow-\frac{1}{12}\left(x-2018\right)=0\Leftrightarrow x=2018\)
Bài làm :
Ta có :
\(x-2019+\frac{x-2020}{2}=\frac{x-2021}{3}+\frac{x-2022}{4}\)
\(\Rightarrow x-2019+1+\frac{x-2020}{2}+1=\frac{x-2021}{3}+1+\frac{x-2022}{4}+1\)
\(\Rightarrow x-2018+\frac{x-2020+2}{2}=\frac{x-2021+3}{3}+\frac{x-2022+4}{4}\)
\(\Rightarrow x-2018+\frac{x-2018}{2}-\frac{x-2018}{3}-\frac{x-2018}{4}=0\)
\(\Rightarrow\left(x-2018\right)\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)=0\)
\(\text{Vì : }\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\ne0\Rightarrow x-2018=0\)
\(\Rightarrow x=2018\)
Vậy x=2018
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))
vậy x= 2023
x + (x + 1) + (x + 2) + ... + (x + 2022) + 2022 = 2022
x + x + x + ... + x + 1 + 2 + 3 + ... + 2022 + 2022 = 2022 (1)
Số số hạng x:
2022 - 0 + 1 = 2023 (số)
Từ (1) ta có:
2023x + 2022.2023 : 2 + 2022 = 2022
2023x + 2045253 = 2022 - 2022
2023x = 0 - 2045253
2023x = -2045253
x = -2045253 : 2023
x = -1011
Ta có : x + (x + 1) + (x + 2) + ... + (x+2022) + 2022 = 2022
=> x + (x + 1) + (x + 2) + ... + (x + 2022) = 2022 - 2022
=> [x + (x + 2022) ] . { [ (x + 2022) - x) : 1 + 1] } : 2 = 0
( số đầu + số cuối . số số hạng : 2 )
=> (2x + 2022) . 2023 : 2 = 0
=> 2x + 2022 = 0 . 2 : 2023= 0
=> (2x + 2022) : 2 = 0 : 2
=> x + 1011 = 0 => x = -1011