Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,f(1/2)=5-2*(1/2)=5-1=4
f(3)=5-2x3=5-6=-1
b,Với y=5 thì 5-2x=5
2x=5-5
2x=0
x=0:2=0
Vậy x=0
Với y=-1 thì 5-2x=-1
2x=5-(-1)
2x=5+1
2x=6
x=6:2=3
Vậy x=3
a) Thay f(1/2) vào hàm số ta có :
y=f(1/2)=5-2.(1/2)=4
Thay f(3) vào hàm số ta có :
y=f(3)=5-2.3=-1
b) y=5-2x <=> 5-2x=5
2x=5-5
2x=0
=> x=0
<=> 5-2x=-1
2x=5-(-1)
2x=6
=> x=3
a, f (1/2) = 5 - 2.1/2 = 4
f (3) = 5 - 2.3 = -1
b, y = 5 <=> 5 - 2x = 5
<=> x = 0
y = -1 <=> 5 - 2x = -1
<=> x = 3
_Hok tốt_
( sai thì thôi nha )
2) a) \(P=3x^2+y^2-8x+2xy+16\)
\(P=\left(x^2+2xy+y^2\right)+2\left(x^2-4x+4\right)+8\)
\(P=\left(x+y\right)^2+2\left(x-2\right)^2+8\ge8\forall x;y\)
\(\Rightarrow\) GTNN của P là 8 khi \(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-x\\x=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\) vậy GTNN của P là 8 khi \(x=2;y=-2\)
b) \(Q=x^2+2y^2-2xy-4y+2017\)
\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)
\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\forall x;y\)
\(\Rightarrow\) GTNN của Q là 2013 khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\) vậy GTNN của Q là 2013 khi \(x=y=2\)
c) \(M=2x^2+y^2-2xy-2x+2016\)
\(M=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+2015\)
\(M=\left(x-y\right)^2+\left(x-1\right)^2+2015\ge2015\forall x;y\)
\(\Rightarrow\) GTNN của M là 2015 khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) vậy GTNN của M là 2015 khi \(x=y=1\)
a) A + x2 - 4xy2 + 2xz - 3y2 = 0
=> A = -x2 + 4xy2 - 2xz + 3y2
b) B + 5x2 - 2xy = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2
c) 3xy - 4y2 - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2
Trả lời:
a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0
=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2
b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2
d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2
A + B = (2x^2 y^2 - 4x^3 + 7xy - 18) + (x^3y + x^2y^2 - 15xy + 1)
= 2x^2 y^2 - 4x^3 + 7xy - 18 + x^3y + x^2y^2- 15xy + 1
= (2x^2 y2 + x^2y^2) - 4x^3 + x^3y + (7xy – 15xy) + ( -18 + 1)
= 3x^2 y2 - 4x^3 + x^3y – 8xy – 17
B=1+2+3+...+98+99
=(1+99)+(2+98)+...+(50+50)
=100+100+...+100
=100*25(Tính số số hạng chia 2)
=2 500