Câu 14 (VD). Cho bất phương trình x² +4x+|x+ 2|–m<0. Xác định m để bất phương t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2022

\(f\left(x\right)=x^2+4x+\left|x+2\right|-m< 0\) 

\(\Leftrightarrow f\left(x\right)=x^2+4x+4+\left|x+2\right|-4-m< 0\)

\(\Leftrightarrow f\left(x\right)=\left(x+2\right)^2+\left|x+2\right|-4-m< 0\)

\(đặt:\left|x+2\right|=t\ge0\Rightarrow f\left(t\right)=t^2+t-4-m< 0\)

\(có\) \(f\left(x\right)nghiệm\Leftrightarrow f\left(t\right)có\)  \(nghiệm\) \(t\ge0\)

\(f\left(t\right)=t^2+t-4< m\)\(có\) \(nghiệm\) \(t\ge0\)

\(\Leftrightarrow m>minf\left(t\right)\left(trên[0;+\infty\right)\)\(\Leftrightarrow m>-4\)

 

11 tháng 3 2021

undefined

11 tháng 3 2021

undefined

Với m=1m=−1 thì PT f(x)=0f(x)=0 có nghiệm x=1x=1 (chọn)

Với m1m≠−1 thì f(x)f(x) là đa thức bậc 2 ẩn xx

f(x)=0f(x)=0 có nghiệm khi mà Δ=m22m(m+1)0Δ′=m2−2m(m+1)≥0

m22m0m(m+2)0⇔−m2−2m≥0⇔m(m+2)≤0

2m0⇔−2≤m≤0

Tóm lại để f(x)=0f(x)=0 có nghiệm thì m[2;0]

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn