Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).
â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)
\(\Leftrightarrow2n-1⋮n+1\)khi \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\) \
\(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)
\(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)
Vậy \(n\in\left(-4;-2;0;2\right)\)
b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)
\(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)
\(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)
\(\Rightarrow3n-2\in U\left(11\right)\)
\(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)
\(\Rightarrow n\in\left(-3;1;\right)\)
Phần c) bạn tự làm nhé!
a)
x-3 | 1 | -1 | 7 | -7 |
2y +1 | 7 | -7 | 1 | -1 |
x | 4 | 2 | 10 | -4 |
y | 3 | -4 | 0 | -1 |
b)
2x +1 | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
3y-2 | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
x | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
y | / | 19 | -3 | / | -1 | / | / | 1 |
Có 4 đáp số :(x =-1; y =19) ; (x =2 ; y =-3)
(x =5 ; y =-1) ; (x =-28 ; y =1)
a,(x-3)(2y+1)=7
Ta co: 7=1.7=7.1=(-1).(-7)=(-7).(-1)
\(\Rightarrow\)(x-3)(2y+1)=1.7 hay (x-3)(2y+1)=7.1 hay (x-3)(2y+1)=(-1).(-7) hay (x-3)(2y+1)=(-7).(-1)
TH1: \(\text{(x-3)(2y+1)=}1.7\Rightarrow\orbr{\begin{cases}\left(x-3\right)=1\\\left(2y+1\right)=7\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=3\end{cases}}\left(TM\right)}\)
TH2: \(\text{(x-3)(2y+1)=7.1}\Rightarrow\orbr{\begin{cases}\text{(x-3)=7}\\\text{ }\text{(2y+1)=1}\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\y=0\end{cases}}\left(TM\right)}\)
TH3:\(\text{(x-3)(2y+1)=(-1).(-7)}\Rightarrow\orbr{\begin{cases}\text{(x-3)=-1}\\\text{(2y+1)=-7}\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=-8\end{cases}\left(TM\right)}}\)
TH4: \(\text{(x-3)(2y+1)=(-7).(-1)}\Rightarrow\orbr{\begin{cases}\text{(x-3)=-7}\\\text{(2y+1)=-1}\end{cases}\Rightarrow\orbr{\begin{cases}x=-4\\y=-1\end{cases}\left(TM\right)}}\)
Vay (x,y)={(4,3);(10,0);(4,-8);(-4;-1)}
b, (2x+1)(3y-2)=-55
Ta co: -55=-1.55=1.(-55)=55.(-1)=-55.1=-11.5=11.(-5)=5.(-11)=-5.11
\(\Rightarrow\)(2x+1)(3y-2)=-1.55 hay (2x+1)(3y-2)=1.(-55) hay (2x+1)(3y-2)=55.(-1) hay (2x+1)(3y-2)=-55.1 hay (2x+1)(3y-2)=-11.5
hay (2x+1)(3y-2)=11.(-5) hay (2x+1)(3y-2)=5.(-11) hay (2x+1)(3y-2)=-5.11
TH1:\(\text{(2x+1)(3y-2)=-1.55}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-1}\\\text{(3y-2)=55}\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\y=19\end{cases}\left(TM\right)}}\)
TH2:\(\text{(2x+1)(3y-2)=1.(-55)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=1}\\\text{(3y-2)=-55}\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=\frac{-53}{3}\end{cases}\Rightarrow}\left(loai\right)}\)
TH3:\(\text{(2x+1)(3y-2)=55.(-1)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=55}\\\text{(3y-2)=-1}\end{cases}\Rightarrow\orbr{\begin{cases}x=27\\y=\frac{1}{3}\end{cases}\left(loai\right)}}\)
TH4: \(\text{(2x+1)(3y-2)=-55.1}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-55}\\\text{(3y-2)=1}\end{cases}\Rightarrow\orbr{\begin{cases}x=-28\\y=1\end{cases}\left(TM\right)}}\)
TH5: \(\text{(2x+1)(3y-2)=-11.5}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-11}\\\text{(3y-2)=5}\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\y=\frac{7}{3}\end{cases}\left(loai\right)}}\)
TH6: \(\text{(2x+1)(3y-2)=11.(-5)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=11}\\\text{(3y-2)=-5}\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\y=-1\end{cases}\left(TM\right)}}\)
TH7:\(\text{(2x+1)(3y-2)=5.(-11)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=5}\\\text{(3y-2)=-11}\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=-3\end{cases}\left(TM\right)}}\)
TH8:\(\text{(2x+1)(3y-2)=-5.11}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-5}\\\text{(3y-2)=11}\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\y=\frac{13}{3}\end{cases}\left(loai\right)}}\)
a)\(x.3^{15}=3^{17}\)
\(x=3^{17}:3^{15}\)
\(x=3^2=9\)
b) \(5^x=6^x\Leftrightarrow x=1;x=0\)
c) \(x^3=x^6\)
\(x^3=x^3.x^3\) \(x^3=1\) \(x=1\) | \(x^3=\left(x^3\right)^2\) \(x=0\) |
B2 ss
a)\(3^{45}=\left(3^3\right)^{15}=27^{15}\)
\(4^{30}=\left(4^2\right)^{15}=16^{15}\)
vì 1615 < 2715 nên 430 < 345
b)
\(818.820=\left(819-1\right)\left(819+1\right)=819^2-1\)
vì 8192 > 8192 - 1 nên 8192 > 818.820
1) \(\left(+15\right)+\left(+17\right)=15+17=32\)
2) \(\left(-3\right)+\left(-7\right)=-3-7=-\left(3+7\right)=-10\)
3) \(\left(-25\right)+\left(+4\right)=-25+4=-\left(25-4\right)=-21\)
4) \(\left(-6\right)+\left(-54\right)=-6-54=-\left(6+54\right)=-60\)
5) \(\left(-15\right)+20=20-15=5\)
6) \(\left(-5\right)+8+7+5\)
\(=\left(-5+5\right)+\left(8+7\right)\)
\(=15\)
7) \(\left(-8\right)+\left(-11\right)+\left(-2\right)\)
\(=\left[\left(-8\right)+\left(-2\right)\right]+\left(-11\right)\)
\(=\left(-10\right)+\left(-11\right)\)
\(=-21\)
8) \(15+\left(-5\right)+\left(-14\right)+\left(-16\right)\)
\(=\left[15+\left(-5\right)\right]+\left[\left(-14\right)+\left(-16\right)\right]\)
\(=10+\left(-30\right)\)
\(=-20\)
9) \(\left(-20\right)+\left(-14\right)+3+\left(-86\right)\)
\(=\left[\left(-20\right)+3\right]+\left[\left(-14\right)+\left(-86\right)\right]\)
\(=\left(-17\right)+\left(-100\right)\)
\(=-117\)
10) \(\left(-136\right)+123+\left(-264\right)+\left(-83\right)+240\)
\(=\left[\left(-136\right)+\left(-264\right)\right]+\left[123+\left(-83\right)\right]+240\)
\(=\left(-400\right)+40+240\)
\(=\left(-360\right)+240\)
\(=-120\)
11) \(\left(-596\right)+2001+1999+\left(-404+189\right)\)
\(=\left(-596\right)+2001+1999-404+189\)
\(=\left[\left(-596\right)-404\right]+\left(2001+189\right)+1999\)
\(=\left(-1000\right)+2190+1999\)
\(=1190+1999\)
\(=3189\)
12) \(314+\left(-153\right)+64+121+\left(-247\right)+218\)
\(=\left(314+64+121\right)+\left[\left(-153\right)+\left(-247\right)\right]+218\)
\(=\left(378+121\right)+\left(-400\right)+218\)
\(=499-400+218\)
\(=99+218\)
\(=317\)
\(\text{#}Toru\)