Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x<y nên a<b.Ta có x=a/m=2a/2m,y=b/m=2b/2m
Chọn số z=2a+1/2m .Do 2a<2a+1=>x<z (1)
Do a<b nên a+1nên a+1 nhỏ hơn hoặc bằng b=>2a+2<=2b
Ta có 2a+1<2a+2<=2b nên 2a+1<2b. Do đó z<y (2)
Từ 1 và 2 suy ra x<z<y
Ta có x < y
=> x + x < y + x
=> \(\frac{2a}{m}<\frac{a+b}{m}\)
=> 2a < a + b
Mà x = \(\frac{a}{m}\)=\(\frac{2a}{2m}\)
y = \(\frac{b}{m}\)= \(\frac{2b}{2m}\)
Theo giả thuyết trên
=> 2a < a + b < 2b
=> \(\frac{2a}{2m}<\frac{a+b}{2m}<\frac{2b}{2m}\)
=> x < z < y (Đpcm)
x=a/m, y=b/m (a, b, m thuộc Z, m>0) và x<y nên suy ra a<b
x<z <=> x=a/m < a+b/2m
<=> 2a < a+b (vì m nguyên và >0)
<=> a< b điều này đúng (suy ra ở trên)
z<y <=> y=b/m > a+b/2m
<=> 2b > a+b (vì m nguyên và >0)
<=> b > a điều này đúng (suy ra ở trên)
chúc bạn học tốt
Ta có x < y
=> x + x < y + x
=> \(\frac{2a}{m}<\frac{a+b}{m}\)
=> 2a < a + b
=> x + y < y + y
=> \(\frac{a+b}{m}<\frac{2b}{m}\)
=> a + b < 2b
Mà x = \(\frac{a}{m}\)=\(\frac{2a}{2m}\)
y = \(\frac{b}{m}\)=\(\frac{2b}{2m}\)
Theo giả thuyết trên
=> 2a < a + b < 2b
=> \(\frac{2a}{2m}<\frac{a+b}{2m}<\frac{2b}{2m}\)
=> x < z < y (Đpcm)
ta có:
x<y=> \(\frac{a}{m}\)<\(\frac{b}{m}\)=> a<b
x=\(\frac{2a}{2m}\); y=\(\frac{2b}{2m}\)
=> 2a<a+b<2b .Nên \(\frac{2a}{2m}\)<\(\frac{a+b}{2m}\)<\(\frac{2b}{2m}\)
vậy x<z<y
Ta có : x < y hay => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x = và y = và z =
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)
Từ (1) và (2) , kết luận : x < z < y.
Phương pháp giải - Xem chi tiết
+) Sử dụng tính chất: Nếu a,b,c∈Za,b,c∈Z và a<ba<b thì a+c<b+c.a+c<b+c.
Lời giải chi tiết
Theo đề bài ta có x=amx=am; y=bmy=bm (a,b,m∈Z,m>0)(a,b,m∈Z,m>0)
Vì x<yx<y nên ta suy ra a<b.a<b.
Ta có : x=2a2mx=2a2m, y=2b2my=2b2m;z=a+b2mz=a+b2m
Vì a<b⇒a+a<a+b⇒2a<a+b.a<b⇒a+a<a+b⇒2a<a+b.
Do 2a<a+b2a<a+b nên x<z(1)x<z(1)
Vì a<b⇒a+b<b+b⇒a+b<2b.a<b⇒a+b<b+b⇒a+b<2b.
Do a+b<2ba+b<2b nên z<y(2)z<y(2)
Từ (1) và (2) ta suy ra x<z<y.
Bạn tham khảo hình ảnh!
Không thấy ib nhé :v
Cre : Hoidap247
Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\) (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{\left(a+b\right)}{2m}\)
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y