Cho ΔABC, vẽ điểm M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

A B C D M E F

Giải:

a, Xét \(\Delta ABM,\Delta DCM\) có:

AM = MD ( gt )

\(\widehat{AMB}=\widehat{DMC}\) ( đối đỉnh )

BM = MC ( gt )

\(\Rightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\left(đpcm\right)\)

b, Vì \(\Delta ABM=\Delta DCM\Rightarrow\widehat{ABM}=\widehat{DCM}\) ( góc t/ứng )

\(\Rightarrow\)AB // CD ( đpcm )

c, Xét \(\Delta BEM,\Delta CFM\) có:

BM = CM ( gt )

\(\widehat{BEM}=\widehat{CFM}=90^o\)

\(\widehat{EMB}=\widehat{FMC}\) ( đối đỉnh )

\(\Rightarrow\Delta BEM=\Delta CFM\) ( c.huyền - g.nhọn )

\(\Rightarrow EM=FM\) ( cạnh t/ứng )

\(\Rightarrow M\) là trung điểm của EF ( đpcm )

Vậy...

31 tháng 5 2017

Ta có hình vẽ:

M A B C D E F

a/ Xét tam giác ABM và tam giác DCM có:

AM = MD (GT)

AMB = DMC (đđ)

BM = MC (M là trung điểm BC)

Vậy tam giác ABM = tam giác DCM

b/ Ta có: tam giác ABM = tam giác DCM (cmt ở câu a)

=> góc BAM = góc MDC (hai góc tương ứng)

Mà hai góc này đang ở vị trí so le trong

=> AB // DC (đpcm)

c/ Xét hai tam giác vuông BEM và CFM có:

BM = MC (M là trung điểm BC)

EMB = FMC (đđ)

Vậy tam giác BEM = tam giác CFM

=> ME = MF (1)

Ta có: góc EMB = góc FMC (đđ)

Mà góc EMB + góc EMC = 1800 (kề bù)

=> góc FMC + góc EMC = 1800

=> góc EMF = 1800

Vậy E;M;F thẳng hàng (2)

Từ (1) và (2) => M là trung điểm EF

14 tháng 12 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{x-y-1+3}{4011}=\dfrac{4009-1+3}{4011}=\dfrac{4011}{4011}=1.\)

Từ đó:

\(\dfrac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006.\)

\(\dfrac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003.\)

Vậy \(x=2006;y=-2003.\)

6 tháng 2 2017

Yêu cầu của bài là j vậy?

11 tháng 6 2017

F=|x-1|+|x-2|+|x-3|+...+|x-100|=|x-1|+|2-x|+|x-3|+...+|100-x|

Áp dụng bđt |a|+|b|\(\ge\)|a+b|, ta có:

F=|x-1|+|2-x|+|x-3|+...+|100-x| \(\ge\) |x-1+2-x+x-3+...+100-x| = |50| = 50

=> F\(\ge\)50 => \(Min_F=50\)

P/s: mấy thánh toán đi ngang cho mik hỏi giải vậy có đúng hog?

11 tháng 6 2017

\(F=\left|x-1\right|+\left|x-2\right|+....+\left|x-99\right|+\left|x-100\right|\)

\(F=\left(\left|x-1\right|+\left|x-100\right|\right)+\left(\left|x-2\right|+\left|x-99\right|\right)+.....+\left(\left|x-50\right|+\left|x-51\right|\right)\)

\(F=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\)

(do \(\left|-A\left(x\right)\right|=\left|A\left(x\right)\right|\))

Với mọi giá trị của \(x\in R\) ta có:

\(\left|x-1\right|\ge1;\left|x-2\right|\ge x-2;.....;\left|99-x\right|\ge99-x;\left|100-x\right|\ge100-x\)

\(\Rightarrow\left|x-1\right|+\left|100-x\right|\ge x-1+100-x\ge99\)

\(\left|x-2\right|+\left|99-x\right|\ge x-2+99-x\ge97\).............

\(\left|x-50\right|+\left|51-x\right|\ge x-50+51-x\ge1\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge99+97+.....+3+1\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge\dfrac{\left(99+1\right).50}{2}\)

\(\Rightarrow\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+....+\left(\left|x-50\right|+\left|51-x\right|\right)\ge2500\)

Dấu "=" sảy ra khi:

\(\left\{{}\begin{matrix}x-50\ge0\\51-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge50\\x\le51\end{matrix}\right.\Rightarrow50\le x\le51\)

Vậy GTNN của biểu thức F là 2500 đạt được khi và chỉ khi \(50\le x\le51\)

Mình cũng không chắc đâu! Chúc bạn học tốt!!!

18 tháng 3 2017

GP là điểm số được học 24h đánh đúng . Còn SP là điểm số mà các thành viên tham gia học trực tuyến 24h đánh đúng đó ok

18 tháng 3 2017

hoc24 not học 24h

tham gia web thỳ làm ơn viết đúng cái tên dùm!

19 tháng 4 2017

lớp mấy nhỉ

19 tháng 4 2017

đăng lớp nào thì thi lớp đó có thế mà cũng hỏi

16 tháng 11 2017

A B C N M

a, Xét ΔABM và ΔACM ,có :

AB = AC ( gt )

AM : cạnh chung

BM = CM ( gt )

\(\Rightarrow\) ΔABM = ΔACM ( c.c.c )

b, AB = AC

\(\Rightarrow\Delta ABC\) cân tại A

\(\Rightarrow\) AN là đường trung tuyến đồng thời là đường cao của ΔABC

Hay AN là phân giác của \(\widehat{BAC}\)

c, Ta có :MB = MC

\(\Rightarrow\) ΔMBC cân tại M

=> MN là đường tủng tuyến đồng thời là đường cao của ΔMBC

\(\Rightarrow MN\perp BC\) (1)

ΔABC cân tại A

=> AN là đường phân giác đồng thời là đường cao

\(\Rightarrow AN\perp BC\) (2)

Từ (1)(2) => A, M , N thẳng hàng

1 tháng 2 2017

hé hé bạn mik ớ ngân giới tính rất linh hoạt

P/s : đầu óc bạn thì ko đc linh hoạt bởi tên ngân còn hỏi là trai hay gái

1 tháng 2 2017

nghé z

30 tháng 8 2017

>> Mình không chép lại đề bài nhé ! <<

Cách 1 :

\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)

Cách 2 :

\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)

\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)

\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)

30 tháng 8 2017

Cách 1 :

\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)

\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)

\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)

\(=-\dfrac{5}{2}\)

Cách 2 :

\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)

\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)

\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)

\(=\left(-2\right)+0+\dfrac{-1}{2}\)

\(=\dfrac{-5}{2}\)

25 tháng 4 2017

Mấy cái nghiệm nghiệm này dễ lẫn lộn v~ nhìn mãi mới thấy toán 7 thì nghiệm chắc chắn = 0 :v

\(2\left(x+3\right)-5x+2=0\)

\(\Leftrightarrow2x+6-5x+2=0\)

\(\Leftrightarrow-3x+8=0\)

\(\Rightarrow x=\dfrac{8}{3}\)

Vậy nghiệm của đa thức bằng \(\dfrac{8}{3}\)