Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: AD=2cm, AB=4cm, AE=12cm, AC=6cm
\(=>\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{2}{4}=\dfrac{1}{2}\\\dfrac{AE}{AC}=\dfrac{12}{6}=2\end{matrix}\right.\)
\(=>\dfrac{AE}{AC}>\dfrac{AD}{AB}\)
a: Xét ΔABC và ΔAED có
\(\dfrac{AB}{AE}=\dfrac{AC}{AD}\left(\dfrac{6}{2}=\dfrac{9}{3}=3\right)\)
\(\widehat{A}\) chung
Do đó: ΔABC~ΔAED
=>\(k=\dfrac{AB}{AE}=3\)
Theo định lí Ta-let có BD//CE, ta có: \(\frac{AD}{AE}=\frac{AB}{AC}\Leftrightarrow\frac{2,5}{AE}=\frac{5}{8}\)
\(\Rightarrow AE=\)4 (cm)
a. cmr: BC//DE?
có: AD = 11/8 BD (GT)
=> AB = 3/8 AD
lại có: AC = 3/8 CE (GT)
mà B, D thuộc Ax (GT); C, E thuộc Ay (GT); xAy khác góc bẹt (GT)
=> BC//DE (ĐL Talet)
b. cho BC = 3cm. DE = ?
xét tam giác ADE có: BC//DE (CMT)
=> AC/AE=BC/DE=AB/AD (hệ quả ĐL Talet)
mà AC/AE=AB/AD=3/8 (GT, CMT)
=> BC/DE = 3/8
=> 8.BC=3.DE
=> 8.3=3.DE (vì BC=3 cm)
=>24=3.DE
=>DE= 8cm
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
cjhiuj