Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/. Gọi K là giao điểm của EF và AM, J là giao điểm của EF và AH
CM: góc AEK = góc ABC
Vì J là giao điểm của 2 đường chéo trong hcn AEHF => ẠJ = JH = Ẹ = JF
=> tam giác EJA cân tại J => AEJ = EAH (1)
Xét tam giác vuông ABH => EAH +ABC = 90
Xét tam giác vuông ABC=> ABC + ACB = 90
=> EAH = ACB và (1) => ACB = AEJ (2)
Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = BM = MC
=> tam giác ABM cân tại M => EAK = ABC (3)
Xét tam giác EAK: có: AEJ + EAK = ACB + ABC = 90 ( do 2 và 3)
=> tam giác AEK vuong tại K
Hay AM vuông EF
4/. Vì A đới xứng với I qua BC => AI vuông góc với BC . Mà AH vuong với BC => A. H , I thẳng hàng . hay H là trung điểm của AI
Xét tam giác AID, có:
H là trung ddierm của AI, M là trung điểm của AD
=> HM là đường trung bình của tam giác AID => HM // ID
=> tứ giác BIDC là hình thang
Xét tam giác ABI , có: BH vừa là đường cao vừa là đường trung tuyến => ABI cân tại B => IBH = ABH (BH là đường phân giác) (4)
Xét tứ giác ABCD có:
M là trung điểm BC
M là trung điểm AD
M = BC giao AD
=> ABCD là hình bình hành và A = 90 => ABCD là hình chữ nhật
=> DCB = ABC (DC // AB và solle trong) (5)
Từ 4 và 5 => BCD = IBC (= ABC) => Hình thang BIDC là hình thang cân
1/. Xét Tứ giác AEHF, có:
E = 90 (EH vuong góc AB)
F = 90 (HF vuong AC)
A = 90 (ABC vuong tai A)
=> AEHF là hcn
2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC => AM =MB = MC = 2,5 cm
=> BC = 2,5 x2 = 5cm
Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:
AB^2 +AC^2 =BC^2
9+AC^2 = 25
=> AC^2 = 25-9 = 16
=> AC =4cm
Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2
3/.
1: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
2: AM=2,5cm nên BC=5cm
=>AC=4cm
S=3x4/2=6cm2
3:
Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
Suy ra: góc AFE=góc AHE=góc ABC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>góc MAC=góc ACB
=>góc MAC+góc EFA=90 độ
=>AM vuông góc với EF
4:
Xét ΔADI có
H,M lần lượt là trung điểm của AI và AD
nên HM là đường trung bình
=>HM//DI
=>DI//BC
Xét ΔCIA có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCIA cân tại C
=>CI=CA=DB
=>BIDC là hình thang cân
a,Xét tam giác AHB trung tại H có HM là đường trung tuyến nên HM =2AB (1)
Trong tam giác ABC có N là trug điểm của AC, O và K là trug điểm của BC nên NK là đường trng bình của tam giác ABC => NK =2AB
Từ (1) và (2), ta có HM=NK
b, Trong tam giác AHC vuông tại H có HN là đường trung tuyến nên HN=AC (3)
Tam giác ABC có M là trung điểm của AB và K là trung điển của BC nên MK là đường trug bình của tam giác ABC => MK=AC (4)
Từ (3) VÀ (4) ,ta có HN = 2MK
Tam giác ABC có M là trung điểm của AB và N là trung điểm của AC nên MN là đường trung bình của tam giác ABC =>MN//BC hay MN=KH =>MNKH là hình thang .Từ (a) và (b), MNKH là hình thang cân.
Xét \(\Delta ABC\)có :
M là trung điểm AB
N là trung điểm AC
=> MN là đường trung bình
=> MN // BC , MN = \(\frac{BC}{2}\)
Xét \(\Delta AHC\)có :
HN là trung tuyến
=> HN = AN = NC = \(\frac{AC}{2}\)
Xét \(\Delta ABC\)có :
M là trung điểm AB
K là trung điểm BC
=> MK là đường trung bình
=> MK // AC , MK = \(\frac{AC}{2}\)
=> MK = NH
Xét tứ giác MNKH có :
MN//HK
MK = NH
=> MNKH là hình thang cân
b) Xét \(\Delta AED\)có :
H là trung điểm AE
K là trung điểm AD
=> HK là đường trung bình
=> HK // ED
Xét \(\Delta ACE\)có :
HC là trung trực
=> \(\Delta ACE\)cân tại C
=> AC = CE
Xét tứ giác ACDB có :
K là trung điểm BC
K là trung điểm AD
=> ACDB là hình hình hành
=> AC = BD
Mà CE = AC (cmt)
=> BD =CE
Mà BC // ED
=> BCDE là hình thang cân
Bài 1 :
B A C H K E D M N
a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)
Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)
=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)
Từ (1) và (2) suy ra MNKH là hình thang cân.
b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3)
Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD
=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)
=> BE = CD (4)
Từ (3) và (4) suy ra BCDE là hình thang cân.
A B C D E N M P
Bài 2 :
a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)
Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\); \(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)
\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)
b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC
=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P
Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.