Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( mấy cái cơ bản thì tự viết nhé )
a) góc MAO và góc MBO= 90 độ
xét tứ giác MAOB có góc MAO+MBO=180 độ
=> MAOB nội tiếp
b) Xét (O) có EB là tiếp tuyến của (O)
\(\Rightarrow\widehat{EBD}=\widehat{EAB}\left(=\frac{1}{2}sđ\widebat{DB}\right)\)
Xét tam giác EDB và tam giác EBA có:
\(\hept{\begin{cases}\widehat{AEB}chung\\\widehat{EBD}=\widehat{EAB}\left(cmt\right)\end{cases}\Rightarrow\Delta EDB~\Delta EBA\left(g-g\right)}\)
\(\Rightarrow\frac{BE}{DE}=\frac{AE}{BE}\)
\(\Rightarrow BE^2=AE.DE\left(1\right)\)
Vì \(AC//MB\Rightarrow\widehat{ACM}=\widehat{DME}\left(SLT\right)\)
Ta có: \(\hept{\begin{cases}\widehat{ACM}=\widehat{ABD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\\\widehat{ABD}=\widehat{MAD}\left(=\frac{1}{2}sđo\widebat{AD}\right)\end{cases}\Rightarrow\widehat{ACM}=\widehat{MAD}}\)
\(\Rightarrow\widehat{DME}=\widehat{MAD}\)
Xét tam giác EMD và tam giác EAM có:
\(\hept{\begin{cases}\widehat{DME}=\widehat{MAD}\\\widehat{AME}chung\end{cases}}\Rightarrow\Delta EMD~\Delta EAM\left(g-g\right)\)
\(\Rightarrow\frac{ME}{DE}=\frac{AE}{ME}\)
\(\Rightarrow ME^2=DE.AE\left(2\right)\)
Từ (1) và (2) \(\Rightarrow BE=ME\left(đpcm\right)\)
c) mai nốt :V
c) El à trung điểm MB;H là trung điểm AB
-> EH là đường trung bình tam giác MAB
=> EH// MA
=> góc EHB= góc MAB ( đồng vị )
Mà góc MAB = góc AKB ( = 1/2 số đo cung AB )
=> góc EHB= góc AKB
mà góc EHB+ góc IHB = 180 độ
=> góc AKB + góc IHB = 180 độ
=> BHIK nội tiếp
=> góc BHK= BIK mà góc BHK= 90 độ
=> góc BIK= 90 độ
=> AK vuông góc với BI
a) góc HEC = góc CAM = góc CBH.
b) CM EB2 = EC.EA = EM2 từ đó ta có góc EMC = góc EAM = góc ADC suy ra AD song song MB. Do đó góc BDA = góc ABM = góc BAD.
c) Ta có BJ là đường kính và BJ vuông góc với AD tại K (AD song song MB). Do đó KD = KA
E M A B O C H N D J K
a) kẻ AO cắt (O) tại N
xét 2 tam giác vuông MAO và MBO có OA=OB và OM chung nên là 2 tam giác bằng nhau => MA=MB và góc OMA= góc OMB
tam giác MAB cân ở M có MH là phân giác nên cũng là đường cao nên MH \(\perp AB\)
tam giác vuông MHB có HE là trung tuyến nên HE=EB hay EHB cân ở E => \(\widehat{EHB}=\widehat{EBH}=\widehat{MAB}\)(Vì tam giác MAB cân ở M)=\(\widehat{MOA}\)(vì đều + \(\widehat{OAH}\)=90o)
Mà BN vuông góc với AB; MO cũng vuông góc với AB => MO//BN nên \(\widehat{MOA}=\widehat{ONB}\)=\(\widehat{ECB}\)(vì tứ giác ACBN nội tiếp)
vậy \(\widehat{EHB}=\widehat{ECB}\)=> CHBE nội tiếp
b) EB là tiếp tuyến của (O) nên dễ dàng chứng minh EB2=EC.EA
Mà EB=EM => EM2=EC.EA <=> \(\frac{EM}{EC}=\frac{EA}{EM}\)=> tam giác EMC và tam giác EAM đồng dạng => \(_{\widehat{AME}=\widehat{MCE}=\widehat{ACD}=\widehat{ABD}}\)
hay \(\widehat{AME}=\widehat{ABD}\)
lại có \(\widehat{ADB}=\widehat{ECB}=\widehat{EHB}=\widehat{EBH}\)
2 tam giác AMB và tam giác ABD có 2 góc tương ứng bằng nhau => đồng dạng với nhau
mà tam giác AMB cân ở M nên tam giác ABD cân ở B
c)\(\frac{KD}{KA}=3\)