Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ DM ∟ AC sao cho DM = AB.
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c)
=> ^DCM = ^AEB và BE = MC (1)
Δ BMD = Δ BED (c - g - c)
=> ^BMD = ^BED và BM = BE (2)
(1) và (2) cho:
^DCM = ^BMD và CM = MB
=> Δ BMC cân tại M
mà ^DMC + ^DCM = 90o (Δ MDC vuông)
=> ^DMC + ^BMD = 90o
=> Δ BMC vuông cân.
=> BCM = 45o
Mà ^ACB + ^DCM = ^BCM
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))
Cách 2:
Đặt AB = a
ta có: BD = a√2
Do DE/DB = DB/DC = 1/√2
=> Δ DBC đồng dạng Δ DEB (c - g - c)
=> ^DBC = ^DEB
Δ BDC có ^ADB góc ngoài
=> ^ADB = ^DCB + ^DBC
hay ^ACB + ^AEB = 45o
Cách 3
ta có:
tanAEB = AB/AE = 1/2
tanACB = AB/AC = 1/3
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB)
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o
Vậy ^ACB + ^AEB = 45o
Kẻ DM ∟ AC sao cho DM = AB.
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c)
=> ^DCM = ^AEB và BE = MC (1)
Δ BMD = Δ BED (c - g - c)
=> ^BMD = ^BED và BM = BE (2)
(1) và (2) cho:
^DCM = ^BMD và CM = MB
=> Δ BMC cân tại M
mà ^DMC + ^DCM = 90o (Δ MDC vuông)
=> ^DMC + ^BMD = 90o
=> Δ BMC vuông cân.
=> BCM = 45o
Mà ^ACB + ^DCM = ^BCM
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))
A C B D F I G H K L 1 2 3 4 1 2 E 1 2 1
Lấy điểm L sao cho A là trung điểm LB thì 2 tam giác vuông\(\Delta CAL=\Delta CAB\left(2cgv\right)\)
=> CL = CB mà BC = 2AB ; LB = 2AB nên BC = LB => CL = LB = CB =>\(\Delta CLB\) đều\(\Rightarrow\widehat{ABC}=60^0\)
\(\Delta ABC\)vuông tại A có\(\widehat{ACB}=90^0-\widehat{ABC}=30^0\Rightarrow\widehat{C_2}=\frac{30^0}{3}=10^0\Rightarrow\widehat{C_3}=20^0\)
Ta chứng minh được 2 cặp tam giác vuông\(\Delta CKH=\Delta CKF\left(2cgv\right);\Delta CIF=\Delta CIG\left(2cgv\right)\)
=> CH = CG (1)(vì CH = CF ; CF = CG) ;\(\widehat{C_1}=\widehat{C_2};\widehat{C_3}=\widehat{C_4}\)
\(\Rightarrow\widehat{HCG}=\widehat{C_1}+\widehat{C_2}+\widehat{C_3}+\widehat{C_4}=2\left(\widehat{C_2}+\widehat{C_3}\right)=2\widehat{ACB}=60^0\)(2)
Từ (1) và (2),ta có\(\Delta HCG\)đều nên\(\widehat{G_1}=60^0\)
\(\Delta FCG\)cân tại C (CF = CG) có\(\widehat{FCG}=\widehat{C_3}+\widehat{C_4}=2\widehat{C_3}=40^0\Rightarrow\widehat{FGC}=\frac{180^0-40^0}{2}=70^0\)
\(\Rightarrow\widehat{G_2}=\widehat{CGF}-\widehat{G_1}=70^0-60^0=10^0\)
\(\widehat{B_1}=\frac{\widehat{ABC}}{3}=20^0\Rightarrow\widehat{B_2}=\widehat{ABC}-\widehat{B_1}=40^0\)
\(\widehat{DFG}=\widehat{I_1}+\widehat{B_2}=90^0+40^0=130^0\)(\(\widehat{DFG}\)là góc ngoài\(\Delta FIB\)).\(\Delta DFG\)có :
\(\widehat{FDG}=180^0-\widehat{DFG}-\widehat{G_2}=180^0-130^0-10^0=40^0\)
\(\Delta ADB\)vuông tại A có\(\widehat{ADB}=90^0-\widehat{B_1}=70^0\).
Ta chứng minh được 2 tam giác vuông\(\Delta DKH=\Delta DKF\left(2cgv\right)\)nên\(\widehat{HDK}=\widehat{ADB}\)
\(\Rightarrow\widehat{HDG}=\widehat{HDK}+\widehat{ADB}+\widehat{FDG}=70^0+70^0+40^0=180^0\)
Vậy H,D,G thẳng hàng