cho hình chóp S.ABCD có đáy là hình bình hành tâm O . gọi M,N lần lượt là hai điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 12 2022

Ta có: \(SB=4MB=4\left(SB-SM\right)\Rightarrow\dfrac{SM}{SB}=\dfrac{3}{4}\)

Tương tự: \(\dfrac{SN}{SD}=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{SM}{SB}=\dfrac{SN}{SD}\)

\(\Rightarrow MN||BD\) (định lý Talet đảo)

\(\Rightarrow BD||\left(MNP\right)\)

11 tháng 12 2023

a: Xét ΔSAD có

M,N lần lượt là trung điểm của SA,SD

=>MN là đường trung bình của ΔSAD

=>MN//AD

Ta có: MN//AD

AD\(\subset\)(ABCD)

MN không nằm trong mp(ABCD)

Do đó: MN//(ABCD)

b: Xét ΔDSB có

O,N lần lượt là trung điểm của DB,DS

=>ON là đường trung bình của ΔDSB

=>ON//SB và \(ON=\dfrac{SB}{2}\)

Ta có: ON//SB

ON\(\subset\)(OMN)

SB không thuộc mp(OMN)

Do đó: SB//(OMN)

c: Xét ΔASC có

O,M lần lượt là trung điểm của AC,AS

=>OM là đường trung bình của ΔASC

=>OM//SC

Ta có: OM//SC

OM\(\subset\)(OMN)

SC không nằm trong mp(OMN)

Do đó: SC//(OMN)

Ta có: SB//(OMN)

SC//(OMN)

SB,SC cùng thuộc mp(SBC)

Do đó: (SBC)//(OMN)

NV
7 tháng 1 2022

a. Do M, N là trung điểm AD, BC \(\Rightarrow MN||AB||CD\)

Gọi Q là trung điểm SA

\(\Rightarrow PQ\) là đường trung bình tam giác SAB

\(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow Q\in\left(MNP\right)\)

\(\Rightarrow Q=SA\cap\left(MNP\right)\)

b. Do Q là trung điểm SA, M là trung điểm AD

\(\Rightarrow MQ\) là đường trung bình tam giác SAD \(\Rightarrow MQ||SD\)

Mà \(MQ\in\left(MNP\right)\Rightarrow SD||\left(MNP\right)\)

Tương tự ta có \(NP||SC\) (đường trung bình) (1)

\(\left\{{}\begin{matrix}AM=NC=\dfrac{1}{2}AD\\AM||NC\end{matrix}\right.\) \(\Rightarrow AN||CM\) (2)

(1);(2) \(\Rightarrow\left(SMC\right)||\left(ANP\right)\)

c. Đề bài không tồn tại điểm L

NV
7 tháng 1 2022

undefined

20 tháng 12 2017

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 105 sgk Hình học 11 | Để học tốt Toán 11

23 tháng 9 2018

NV
7 tháng 1 2024

Bài này ứng dụng 1 phần cách giải của bài này:

 

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử mp (a) cắt SA; SB;SC; SD thứ tự tại A' B' C' D'. Tính \(\dfra... - Hoc24

 

Gọi O' là giao điểm của SO và MP, tương tự như bài trên, ta có 3 đường thẳng SO, MP, NQ đồng quy tại O'

Đồng thời sử dụng diện tích tam giác, ta cũng chứng minh được:

\(3=\dfrac{SA}{SM}+\dfrac{SC}{SP}=\dfrac{2SO}{SO'}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\)

Áp dụng BĐT Cô-si: \(3=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\ge2\sqrt{\dfrac{SB.SD}{SN.SQ}}\Rightarrow SN.SQ\ge\dfrac{4}{9}.SB.SD\)

Theo bổ đề về diện tích tam giác chứng minh ở đầu:

\(\dfrac{S_{SNQ}}{S_{SBD}}=\dfrac{SN.SQ}{SB.SD}\ge\dfrac{\dfrac{4}{9}SB.SD}{SB.SD}=\dfrac{4}{9}\)

\(\Rightarrow S_{SBD}\ge\dfrac{4}{9}.S_{SBD}=\dfrac{4}{9}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{9}\)

NV
7 tháng 1 2024

loading...

25 tháng 5 2017

Gọi K=AM∩SOK=AM∩SO. Mặt phẳng (P) đi qua K và song song với BD nên cắt (SBD) theo giao tuyế d' đi qua K và song song với BD. Vậy qua K, ta vẽ d' song song với BD. Đường thẳng d' cắt SB và SD lần lượt tại E và F. Đây là các điểm cần tìm.

NV
22 tháng 12 2022

Qua S kẻ đường thẳng d song song AD (và BC)

Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)