K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2023

a:

loading...

Phương trình hoành độ giao điểm là:

\(x+2=-\dfrac{1}{2}x-1\)

=>\(x+\dfrac{1}{2}x=-1-2\)

=>1,5x=-3

=>x=-3/1,5=-2

Thay x=-2 vào y=x+2, ta được:

y=-2+2=0

Vậy: (d1) cắt (d2) tại điểm A(-2;0) nằm trên trục hoành

b: Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=x+2=0+2=2\end{matrix}\right.\)

Tọa độ C là:

\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}x-1=-\dfrac{1}{2}\cdot0-1=-1\end{matrix}\right.\)

A(-2;0); B(0;2); C(0;-1)

\(AB=\sqrt{\left(0+2\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(AC=\sqrt{\left(0+2\right)^2+\left(-1-0\right)^2}=\sqrt{2^2+\left(-1\right)^2}=\sqrt{5}\)

\(BC=\sqrt{\left(0-0\right)^2+\left(-1-2\right)^2}=\sqrt{0^2+\left(-3\right)^2}=3\)

Xet ΔABC có \(AB^2+AC^2=BC^2\)

nên ΔABC vuông tại A

=>\(\widehat{BAC}=90^0\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{\sqrt{5}}{3}\)

nên \(\widehat{B}\simeq48^011'\)

Ta có: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}+48^011'=90^0\)

=>\(\widehat{ACB}=41^049'\)

c: Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=2\sqrt{2}+\sqrt{5}+3\)

Vì ΔABC vuông tại A

nên \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot2\sqrt{2}\cdot\sqrt{5}=\sqrt{10}\)

27 tháng 7 2021

\(T=x^4+y^4+z^4\)

áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)

\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)

\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)

dấu "=" xảy rakhi và chỉ khi

\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)

vậy dấu "=" có xảy ra

\(< =>MIN:T=\frac{4}{3}\)

27 tháng 7 2021

sửa dòng 3 dưới lên 

\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)

Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)

10 tháng 3 2016

so do BAC la :........... viet vao cho cham

ung ho nha

10 tháng 3 2016

mik chưa học

29 tháng 7 2020

3, Áp dụng BĐT Cauchy Schwarz dạng cộng mẫu thức ta có :

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=2\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Vậy ta có điều phải chứng minh

29 tháng 7 2020

2 b 

\(bđt< =>a^2c^2+b^2d^2+2abcd\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(< =>2abcd\le a^2d^2+b^2c^2\)

\(< =>a^2b^2+b^2c^2-2abcd\ge0\)

\(< =>\left(ab-cd\right)^2\ge0\)*đúng*

Dấu "=" xảy ra khi và chỉ khi \(\frac{a}{b}=\frac{c}{d}\)

Vậy ta đã hoàn tất chứng minh 

30 tháng 9 2020

:v Làm bài 31 thôi nhá , còn lại all tự làm -..-

Gọi x (cm) , y (cm) là độ dài hai cạnh góc vuông của tam giác vuông (x > 2, y > 4).

Diện tích tam giác ban đầu là \(\frac{1}{2}xy\left(cm^2\right)\)

+ Tăng mỗi cạnh lên 3cm thì tam giác vuông mới có độ dài 2 cạnh là x + 3(cm) và y + 3 (cm)

Diện tích tam giác mới là : \(\frac{1}{2}\left(x+3\right)\left(y+3\right)\left(cm^2\right)\)

Diện tích tăng thêm 36 cm2 nên ta có p/trình :

\(\frac{1}{2}\left(x+3\right)\left(y+3\right)=\frac{1}{2}xy+36\)

\(\Leftrightarrow\left(x+3\right)\left(y+3\right)=xy+72\)

\(\Leftrightarrow xy+3x+3y+9=xy+72\)

\(\Leftrightarrow3x+3y=63\)

\(\Leftrightarrow x+y=21\)

+ Giảm một cạnh 2cm và giảm cạnh kia 4cm thì tam giác vuông mới có 2 cạnh là : x – 2 (cm) và y – 4 (cm).

Diện tích tam giác mới là : \(\frac{1}{2}\left(x-2\right)\left(y-4\right)\left(cm^2\right)\)

Diện tích giảm đi 26cm2 nên ta có phương trình :

\(\frac{1}{2}\left(x-2\right)\left(y-4\right)=\frac{1}{2}xy-26\)

\(\Leftrightarrow\left(x-2\right)\left(y-4\right)=xy-52\)

\(\Leftrightarrow xy-4x-2y+8=xy-52\)

\(\Leftrightarrow4x+2y=60\)

\(\Leftrightarrow2x+y=30\)

Ta có hệ phương trình : \(\hept{\begin{cases}x+y=21\\2x+y=30\end{cases}}\)

Lấy phương trình thứ hai trừ phương trình thứ nhất ta được :

\(\hept{\begin{cases}\left(2x+y\right)-\left(x+y\right)=30-21\\x+y=21\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x+y-\left(x+y\right)=9\\x+y=21\end{cases}\Leftrightarrow\hept{\begin{cases}x=9\\y=12\end{cases}}}\)

Vậy tam giác có hai cạnh lần lượt là 9cm và 12cm

25 tháng 2 2018

nhiều bài thế hả trời