Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{n\left(n+5\right)}\)
\(A=\frac{1}{5}\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{n\left(n+5\right)}\right)\)
\(A=\frac{1}{5}\left(\frac{6-1}{1.6}+\frac{11-6}{6.11}+...+\frac{n+5-n}{n\left(n+5\right)}\right)\)
\(A=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{n}-\frac{1}{n+5}\right)\)
\(A=\frac{1}{5}\left(1-\frac{1}{n+5}\right)\)
\(A=\frac{n+4}{5n+25}\)
\(B=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(3B=1.2.3+2.3.3+3.4.3+...+n\left(n+1\right).3\)
\(3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(3B=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
\(3B=n\left(n+1\right)\left(n+2\right)\)
\(B=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}=\frac{5}{6}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)
A=1.2+2.3+...+n(n+1)
3A=1.2.3+2.3.3+....+3n(n+1)
3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)
3A=n(n+1)(n+2)
A=n(n+1)(n+2)/3 (đpcm)
A=1.2+2.3+....+n(n+1)
3A=1.2.3+2.3.3+....+3n(n+1)
3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)
3A=n(n+1)(n+2)
A=n(n+1)(n+2)/3 (đpcm)
a)\(\Leftrightarrow\frac{1}{n\left(n+1\right)}=\frac{n+1-1}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)(đpcm)
b)\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{7.8}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{8}\)
\(\Rightarrow A=\frac{3}{8}\)
Ta có: \(\frac{1}{1.2}=\frac{3}{1.2.3}\) ;\(\frac{1}{1.2+2.3}=\frac{3}{2.3.4}\); \(\frac{1}{2.3+3.4}=\frac{3}{3.4.5}\); ......;\(\frac{1}{1.2+2.3+3.4+...+n\left(n+1\right)}=\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(S=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
Ta lại có: \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\); \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); \(\frac{2}{3.4.5}=\frac{1}{3.4}-\frac{1}{4.5}\);....;\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)=> \(S=\frac{3}{4}-\frac{3}{2\left(n+1\right)\left(n+2\right)}< \frac{3}{4}\)
=> \(S< \frac{3}{4}\)
: 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
A = 1.2 + 2.3 + 3.4 + ... + n(n + 1)
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 3n(n + 1)
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + n(n + 1).[(n + 2) - (n - 1)]
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - n(n + 1)(n - 1)
3A = n(n + 1)(n + 2)
=> A = \(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)