Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài cạnh các miếng vải hình vuông thỏa mãn mong muốn của người thợ là x(x=ƯCLN(120;160))
Ta có:120=2³×3×5. 160=2⁵×5
=>ƯCLN(120:160)=2³×5=40
Vậy người thợ có thể cắt đc các. miếng vải hình vuông có cạnh 40cm
Đáp số:40cm
Đáp án+Giải thích các bước giải:
Trong trường hợp các tấm vải hình vuông bằng nhau (đề bài không đề cập)
Để cắt được hình vuông có kích thước lớn nhất thì độ dài cạnh hình vuông phải là ƯCLN(120,160)ƯCLN(120,160)
120=23.3.5160=25.5ƯCLN(120,160)=23.5=40120=23.3.5160=25.5ƯCLN(120,160)=23.5=40
Vậy cạnh hình vuông lớn nhất có thể cắt là 40cm40cm
Trong trường hợp các tấm vải hình vuông không bằng nhau, ta có thể cắt hình vuông lớn nhất có cạnh bằng chiều rộng tấm vải, tức là 120cm120cm, phần còn lại có thể chia thành các hình vuông con khác (như hình vẽ).
Tìm UCLN của 120 ,160
120=23.3.5
160=25.5
UCLN(120,160)=23.5=40 ⇒Cạnh HV=40cm
Gọi độ dài cạnh lớn nhất của hình vuông là a và a là ƯCLN ( 70,60)
Ta có 70 =2.5.7
60 = 2.2.3.5 = 22.3.5
=>ƯCLN (70,60) = 2.5 = 10
=> a = 10
ĐỂ CẮT HẾT TẤM BÌA THÀNH NHỮNG HÌNH VUÔNG BẰNG NHAU THÌ ĐỘ DÀI CẠNH HÌNH VUÔNG PHẢI LÀ 1 ƯỚC CỦA CHIỀU RỘNG VÀ CHIỀU DÀI CỦA TẤM BIÀ . DO ĐÓ MUỐN CHO CẠNH HÌNH VUÔNG LÀ LỚN NHẤT THÌ ĐỘ DÀI CỦA CẠNH PHẢI LÀ ƯCLN(75;105) .
- TA CÓ : 75 = 3 . 5 ^2 ; 105 =3.5.7 NÊN ƯCLN (75;105)=15
Đ/S:15CM
Muốn cắt tấm bìa 75x105 thành các hình vuông bằng nhau mà không thừa mảnh nào (và cạnh hình vuông là 1 số tự nhiên) thì độ dài cạnh hình vuông phải là ước chung của 75 và 105.
Vậy độ dài lớn nhất của cạnh hình vuông có thể cắt được chính là ước chung lớn nhất của 75 và 105
75=3.5^2
105=3.5.7
ƯCLN(75,105)=3.5=15
Độ dài lớn nhất của cạnh hình vuông có thể cắt được là 15 cm.
Nhớ k đúng cho mình nhé!
ta có :
\(\hept{\begin{cases}120=2^3.3.5\\160=2^5..5\end{cases}}\Rightarrow UCLN\left(120,160\right)=2^3.5=40\)
vậy hình vuông cạnh lớn nhất thỏa mãn đề bài có độ dài cạnh là 40cm