Bài 1:Cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6.\)Tìm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

Bài 1: Tổng không đổi tích lớn nhất khi 2 số bằng nhau

Do \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)(không đổi)

Nên \(\frac{1}{\sqrt{xy}}\)lớn nhất \(\Leftrightarrow\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{y}}=3\Leftrightarrow x=y=9\)

Khi đó Max \(\frac{1}{\sqrt{xy}}=3.3=9\)
 

Bạn gì ấy trả lời sai cmnr 

28 tháng 12 2015

Áp dụng Cosi

\(\frac{1}{\sqrt{2x-3}}+\sqrt{2x-3}\ge2\)

\(\frac{4}{\sqrt{y-2}}+\sqrt{y-2}\ge4\)

\(\frac{16}{\sqrt{3z-1}}+\sqrt{3z-1}\ge8\)

=> VT >/ VP

Dấu ' = ' xảy ra khi 2x -3 =1=>x =2

                             y -2 = 4 => y =6

                              3z -1 =16 => z =17/3

27 tháng 4 2020

Em vào câu hỏi tương tự tham khảo: 

a) Ta có: \(x^2+y^2=1\Leftrightarrow x^4+2x^2y^2+y^4=1\)

Khi đó: \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

<=> \(\left(a+b\right)\left(\frac{x^4}{a}+\frac{y^4}{b}\right)=x^4+2x^2y^2+y^4\)

<=> \(\frac{b}{a}x^4+\frac{a}{b}y^4=2x^2y^2\)

<=> \(\frac{x^4}{a^2}+\frac{y^4}{b^2}-\frac{2x^2y^2}{ab}=0\)

<=> \(\left(\frac{x^2}{a}-\frac{y^2}{b}\right)^2=0\)

a) \(\frac{x^2}{a}=\frac{y^2}{b}\Leftrightarrow bx^2=ay^2\)

b)  \(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)( dãy tỉ số bằng nhau)

Khi đó: \(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=2\frac{x^{2008}}{a^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)

14 tháng 7 2015

+\(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\Leftrightarrow\left(\sqrt{x-y+z}+\sqrt{y}\right)^2=\left(\sqrt{x}+\sqrt{z}\right)^2\)

\(\Leftrightarrow x-y+z+y+2\sqrt{xy-y^2+zx}=x+z+2\sqrt{zx}\)

\(\Leftrightarrow2\sqrt{xy-y^2+zx}=2\sqrt{zx}\Leftrightarrow xy-y^2+zx=zx\)

\(\Leftrightarrow y\left(x-y\right)=0\Leftrightarrow x=y\text{ (do }y\ne0\text{)}\)

+\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{xy+yz+zx}{xyz}=1\Leftrightarrow xy+yz+zx=xyz\)

\(\Leftrightarrow xy+yz+zx-xyz=0\)\(\Leftrightarrow x^2+zx+zx-x^2z=0\Leftrightarrow x\left(x+2z-xz\right)=0\)

\(\Leftrightarrow x+2z-xz=0\text{ (do }x\ne0\text{)}\)\(\Leftrightarrow\left(x-2\right)\left(z-1\right)=2=-1.\left(-2\right)=1.2\)

Do x, z nguyên nên có các trường hợp sau:

+\(x-2=-1\Leftrightarrow x=1\text{ và }z-1=-2\Leftrightarrow z=-1\text{ (loại do }z>0\text{)}\)

+\(x-2=1\Leftrightarrow x=3\text{ và }z-1=2\Leftrightarrow z=3\Rightarrow\left(x;y;z\right)=\left(3;3;3\right)\)

+\(x-2=-2\Leftrightarrow x=0\text{ và }z-1=-1\Leftrightarrow z=0\text{ (loại do }x,z\ne0\text{)}\)

+\(x-2=2\Leftrightarrow x=4\text{ và }z-1=1\Leftrightarrow z=2\Rightarrow\left(x;y;z\right)=\left(4;4;2\right)\)

Kết luận: \(\left(x;y;z\right)=\left(3;3;3\right);\left(4;4;2\right)\)

 

 

14 tháng 7 2015

tớ chưa lên lớp 8 nên ko bít làm