Cho phương trình: x2 -2x +m-3=0. Tìm m để phương tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2021

\(x^2-2x+m-3=0\)

\(\Delta=4-4m+12\)

Để pt có 2 no \(x_1,x_2\Leftrightarrow\Delta\ge0\)

\(\Leftrightarrow16-4m\ge0\)

\(\Leftrightarrow m\le4\)

Theo hệ thức Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(1\right)\\x_1.x_2=m-3\left(2\right)\end{cases}}\)

\(x_1^2+3x_2^2=4x_1x_2\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1-3x_2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=x_2\\x_1=3x_2\end{cases}}\)

TH1: \(x_1=x_2\) 

Kết hợp với (1)

 \(\Rightarrow x_1=x_2=1\)

Thay \(x_1=x_2=1\)vào (2) ta được :

\(m-3=1\)

\(\Leftrightarrow m=4\left(tm\right)\)

TH2: \(x_1=3x_2\)

kết hợp với  (1)

\(\Rightarrow\hept{\begin{cases}x_1+x_2=2\\x_1=3x_2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{3}{2}\\x_2=\frac{1}{2}\end{cases}}\)

Thay \(\hept{\begin{cases}x_1=\frac{3}{2}\\x_2=\frac{1}{2}\end{cases}}\)vào (2) ta được:

\(\frac{3}{4}=m-3\)

\(\Leftrightarrow m=\frac{15}{4}\left(tm\right)\)

Vậy \(m\in\left\{4;\frac{15}{4}\right\}\)thì pt có no \(x_1,x_2\)thỏa mãn \(x_1^2+3x_2^2=4x_1x_2\)

5 tháng 7 2020

Mình

không

bít

làm!

5 tháng 7 2020

Mình

không

bít 

làm!                                                     

28 tháng 5 2018

k có tl à b

13 tháng 4 2016

TỪ GT TA CÓ X1=2X2 HOẶC X1=-2X2

VÌ HỆ SỐ  a*c<0 MỌI m THỎA MÃN

THEO HỆ THỨC VIET X1+X2=3

XÉT TRƯỜNG HỢP X1=2X2  \(\Rightarrow X_2=1;X_1=2\Rightarrow-2m^2=2\Rightarrow\) KHÔNG CÓ m

cmtt  VỚI X1=-2X2   m=-3;3

6 tháng 4 2017

\(x^2-2mx+m^2-m+4=0\)

a/ ( a = 1; b = -2m; c = m^2 - m + 4 )

\(\Delta=b^2-4ac\)

   \(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)

   \(=4m^2-4m^2+4m-16\)   

    \(=4m-16\)

Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)

Ta có: \(A=x_1^2+x_2^2-x_1x_2\)

             \(=S^2-2P-P\)

             \(=S^2-3P\)

             \(=\left(2m\right)^2-3\left(m^2-m+4\right)\)

             \(=4m^2-3m^2+3m-12\)

              \(=m^2+3m-12\)

               \(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)

                \(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)

Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)

6 tháng 4 2017

a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
 để pt có ng khi Δ > 0 & Δ=0
 => m> hoặc = 4
 

1 tháng 5 2019

đenta phẩy= 1-m+3=4-m

để pt có 2 no phân biệt thì đenta phẩy >0

=> 4-m>0

=> m<4

theo hệ thức viets ta có: x1+x2=2 và x1*x2=-3

khi đó: x1^2-2x2+x1x2=-12

27 tháng 5 2020

bai kho the toi khong biet