Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge1^2=1\)
\(\Rightarrow a^2+b^2\ge\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=\dfrac{1}{2}\)
a, Gọi pt đường thẳng đi qua A và B là (d) y = ax + b
Vì A thuộc (d) => 1 = 2a + b (1)
Vì B thuộc (d) => 2 = a + b (2)
Lấy (1) - (2) được a = -1
thay a = -1 vào (2) => b = 3
=> (d) y = -x + 3
b,Đường thẳng x = 1 ???
b) Tọa độ giao điểm của hai đừng thẳng x=1 và y=2x+1 là nghiệm của hệ phương trình:
\(\hept{\begin{cases}x=1\\y=2x+1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)=> C(1; 3) là giao điểm
Đường thẳng y=mx+1 đi qua C (1; 3) khi đó C thuộc đường thẳng y=mx+1
=> 3=m.1+1 <=> m=2
\(x_1+x_2=2\\x_1.x_2=2m-1 \)
\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=2\infty\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}=4\)
\(\approx\frac{x_1+x_2}{x_1x_2}+\frac{2}{\sqrt{2m-1}}=4\)
\(\approx\frac{2}{2m-1}+\frac{2}{\sqrt{2m-1}}=4\)
\(\approx\frac{1}{2m-1}+\frac{1}{\sqrt{2m-1}}=2\)
\(\Rightarrow m=1\)
\(=\sqrt{3\left(x^2-2x+1\right)+25}\supseteq\sqrt{3\left(x+1\right)^2+25}\supseteq5\)
min=5 <=>x=-1
\(\text{Đặt }A=\sqrt{3x^2-6x+28}=\sqrt{3x^2-6x+3+25}\)
\(=\sqrt{3.\left(x^2-2x+1\right)+25}=\sqrt{3.\left(x-1\right)^2+25}\)
\(\Rightarrow A^2=3.\left(x-1\right)^2+25\ge25\Rightarrow A\ge\sqrt{25}=5\)
Dấu "=" xảy ra khi : x=1
Vậy GTNN của A là 5 tại x=1
A=B òi mà
để A,B có nghĩa thì
\(\hept{\begin{cases}x+2\ge0\\x-3\ge0\end{cases}}\)
\(\hept{\begin{cases}x\ge-2\\x\ge3\end{cases}\Rightarrow x\ge3}\)
chưa bằng nhau đâu vì chưa biết giá trị ở dưới dấu căn là âm hay dương của BT A
C1 : *Xét m < 0 thì m + |m| = m - m = 0
m|m| = -|m2| < 0
Nên m + |m| > m|m|
*Xét m = 0 thì m + |m| = m|m| (=0)
*Xét 0 < m < 2 thì m + |m| = 2m
m|m| = m2
Xét hiệu m2 - 2m = m(m - 2) < 0 V 0 < m < 2
Nên m + |m| > m|m|
*Xét m > 2 thì m + |m| = 2m
m|m| = m2
Xét hiệu m2 - 2m = m(m - 2) > 0 V m > 2
Nên m + |m| < m|m|
C2, Gọi BCNN(1 ; 2 ; 3 ; ... ; 2002) = a
2002 số liên tiếp cần xét là : a ; a + 1 ; a + 2 ; a + 3 ; ... ; a + 2001
Trong 2002 số này thì a \(⋮\)1 ; 2 ; 3 ; ... ; 2001
=> a ; a + 1 ; ... ; a + 2001 là hợp số
=> có 2002 số tự nhiên liên tiếp là hợp số
chúng ta cần làm gì