loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2024

4b.

Gọi O là giao điểm AC và BD \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0}\\\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\end{matrix}\right.\)

\(T=\left(\overrightarrow{MO}+\overrightarrow{OA}\right)\left(\overrightarrow{MO}+\overrightarrow{OC}\right)+\left(\overrightarrow{MO}+\overrightarrow{OB}\right)^2+\left(\overrightarrow{MO}+\overrightarrow{OD}\right)^2\)

\(=3MO^2+\overrightarrow{MO}.\left(\overrightarrow{OA}+\overrightarrow{OC}\right)+\overrightarrow{OA}.\overrightarrow{OC}+OB^2+OD^2+2\overrightarrow{MO}\left(\overrightarrow{OB}+\overrightarrow{OD}\right)\)

\(=3MO^2-OA^2+OB^2+OD^2\)

\(=3MO^2+OA^2\) (do \(OA=OB=OD\) theo t/c hình chữ nhật)

OA cố định nên T min khi \(MO^2\) min

\(\Rightarrow M\) là hình chiếu vuông góc của O lên cạnh hình chữ nhật

Mà \(AB>AD\)

\(\Rightarrow M\) là hình chiếu vuông góc của O lên AB hoặc AD

\(\Rightarrow M\)  là trung điểm AB hoặc AD

10 tháng 2 2022

\(A=\left(m-2;6\right),B=\left(-2;2m+2\right).\)

Để \(A,B\ne\varnothing\)

\(\Rightarrow\orbr{\begin{cases}m-2\ge-2\\2m+2>6\end{cases}}\Rightarrow\orbr{\begin{cases}m\ge0\\m>2\end{cases}}\)

Kết hợp ĐK \(2< m< 8\)

\(\Rightarrow m\in\left(2;8\right)\)

10 tháng 2 2022
m€{2;8} nha HT @@@@@@@@@@
NV
21 tháng 1 2024

8.

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+2x+3}=a>0\\\sqrt{x^2+4x+5}=b>0\end{matrix}\right.\) \(\Rightarrow2a^2-b^2=x^2+1\)

Pt trở thành:

\(\sqrt{2a^2-b^2}+2a=3b\)

\(\Leftrightarrow\sqrt{2a^2-b^2}=3b-2a\)

\(\Rightarrow2a^2-b^2=4a^2-12ab+9b^2\)

\(\Leftrightarrow2a^2-12ab+10b^2=0\Rightarrow\left[{}\begin{matrix}a=b\\a=5b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x+3}=\sqrt{x^2+4x+5}\\\sqrt{x^2+2x+3}=5\sqrt{x^2+4x+5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+3=x^2+4x+5\\x^2+2x+3=25\left(x^2+4x+5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\24x^2+98x+122=0\left(vn\right)\end{matrix}\right.\)

NV
21 tháng 1 2024

9.

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\left\{{}\begin{matrix}\sqrt{1+x}=a\ge0\\\sqrt{1-x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+2b^2=3-x=-\left(x-3\right)\)

Pt trở thành:

\(a-2b-3ab=-\left(a^2+2b^2\right)\)

\(\Leftrightarrow a-2b+a^2-3ab+2b^2=0\)

\(\Leftrightarrow a-2b+\left(a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a-b+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\a+1=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}=2\sqrt{1-x}\\\sqrt{1+x}+1=\sqrt{1-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}1+x=4\left(1-x\right)\\x+2+2\sqrt{1+x}=1-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=3\Rightarrow x=\dfrac{3}{5}\\-1-2x=2\sqrt{1+x}\left(1\right)\end{matrix}\right.\)

Xét (1) \(\Leftrightarrow\left\{{}\begin{matrix}-1-2x\ge0\\\left(-1-2x\right)^2=4\left(1+x\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le-\dfrac{1}{2}\\x^2=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow x=-\dfrac{\sqrt{3}}{2}\)

Vậy \(x=\left\{\dfrac{3}{5};-\dfrac{\sqrt{3}}{2}\right\}\)

29 tháng 7 2022

a ) \mathbb{R} \backslash (-3; \, 1]R\(3;1]=(-∞;-3]∪(1;+∞)

b) (-\infty; \, 1) \backslash [-2; \, 0](;1)\[2;0]=(- (-\infty; \, 1) \backslash [-2; \, 0]∞;-2)(0;1)

10 tháng 2 2022

a) \(B\subset A\)

\(\Rightarrow\left(-4;5\right)\subset\left(2m-1;m+3\right)\)

\(\Rightarrow2m-1\le-4< 5\le m+3\)

\(\Rightarrow\hept{\begin{cases}2m-1\ge4\\5\le m+3\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}m< -\frac{3}{2}\\m\ge2\end{cases}}\left(ktm\right)\)

\(\Rightarrow m\in\varnothing\)

b) \(A\text{∩ }B=\varnothing\)

\(\Rightarrow\orbr{\begin{cases}m+3< -4\\5< 2m-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}m< -7\\m>3\end{cases}}\)

Vậy \(m< -7;m>3\)

10 tháng 2 2022
M<-7;m>3 nha HT @@@@@@@@@@@@@@
NV
20 tháng 12 2022

5.

Tọa độ dỉnh của (P) là: \(I\left(-\dfrac{b}{2a};\dfrac{-\Delta}{4a}\right)\Rightarrow I\left(1;-4m-2\right)\)

Để I thuộc \(y=3x-1\)

\(\Rightarrow-4m-2=3.1-1\)

\(\Rightarrow m=-1\)

6.a.

Với \(a\ne0\)

 \(\left\{{}\begin{matrix}64a+8b+c=0\\-\dfrac{b}{2a}=5\\\dfrac{4ac-b^2}{4a}=12\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-64a-8b=-64a-8\left(-10a\right)=16a\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)

\(\Rightarrow4a.16a-\left(-10a\right)^2=48a\)

\(\Rightarrow a=-\dfrac{4}{3}\Rightarrow b=\dfrac{40}{3}\Rightarrow c=-\dfrac{64}{3}\)

Hay pt (P): \(y=-\dfrac{4}{3}x^2+\dfrac{40}{3}x-\dfrac{64}{3}\)

NV
20 tháng 12 2022

b.

Thay tọa độ 3 điểm vào pt (P) ta được:

\(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\)

Pt (P): \(y=x^2-x-1\)

c.

Do (P) đi qua 3 điểm có tọa độ (1;16); (-1;0); (5;0) nên ta có:

\(\left\{{}\begin{matrix}a+b+c=16\\a-b+c=0\\25a+5b+c=0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=8\\c=10\end{matrix}\right.\)

hay pt (P) có dạng: \(y=-2x^2+8x+10\)

29 tháng 7 2022

a)     (-\infty ; \, 2) \cap (-1; \, +\infty)(;2)(1;+)=(-1;2)

b)     (1;6∪ [4;8)=(-1;8]

c)      (;5] (5;1)={-5}
30 tháng 10 2023
 

ˆABC=90°+15°30'=105°30' 

Xét tam giác ABC có ˆCAB =60°, ˆABC=105°30' ta có: 

ˆCAB+ˆABC+ˆACB=180° (định lí tổng ba góc trong tam giác)

ˆACB=180°ˆCABˆABC 

ˆACB=180°60°105°30'=14°30'.

Áp dụng định lí sin trong tam giác ABC, ta có: ACsinˆABC=ABsinˆACB

AC=AB.sinˆABCsinˆACB=70.sin105°30'sin14°30'269,4(m)