Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{1^2}< \frac{1}{1.2};\frac{1}{2^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{50}< 1< 2\)
Vậy A < 2
\(\frac{1}{1^2}=1\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(...\)
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 1+1-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\)
Vậy \(A< 2\)
A=1+1/2^2+1/3^2+...+1/50^2
A<1+1/1*2+1/2*3+...+1/49*50
A<1+1/1-1/2+1/2-1/3+...+1/49-1/50
A<1+1-1/50
A<2-1/50<2
KL: vậy A<2
\(\dfrac{1}{2}S=\dfrac{3}{2}+\dfrac{3}{2^2}+...+\dfrac{3}{2^{10}}\)
\(\Leftrightarrow S\cdot\dfrac{1}{2}=\dfrac{3\cdot2^{10}-3}{2^{10}}\)
hay \(S=\dfrac{3\cdot2^{10}-3}{2^9}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(\Leftrightarrow2S=9+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(\Leftrightarrow2S-S=9-\frac{3}{2^9}\)
\(\Leftrightarrow S=9-\frac{3}{2^9}=\frac{4605}{512}\)
Vậy S = \(\frac{4605}{512}\)
S=3+3/2+3/22+.....+3/29
S=3.(1+1/2+1/22+....+1/29)
Đặt A=1+1/2+1/22+......+1/29)
Ta có:2A=2+1+1/2+....+1/28
=>2A-A=(2+1+1/2+....+1/28)-(1+1/2+1/22+....+1/29)
=>A=2-1/29
Khi đó S=3.(2-1/29)=6-3/29=3069/512
Chào bạn, bạn hãy theo dõi câu trả lời của mình nhé!
Ta có :
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(=>2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3072}{512}-\frac{3}{512}=\frac{3069}{512}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{2^9}\)
\(S=3.\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^9}\right)\)
Đặt \(P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(=>2P-P=\left(2+1+\frac{1}{2}+...+\frac{1}{2^8}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(=>P=2-\frac{1}{2^9}=\frac{1023}{512}\)
\(=>S=3.P=3.\frac{1023}{512}=\frac{3069}{512}\)
Và đáp án là đây: Nhà của người thợ săn đó ở Cực Bắc.
Các đường kinh tuyến trên Trái đất sẽ tụ về hai điểm Cực Bắc và Cực Nam. Tại điểm Cực Bắc, đi về hướng nào thì cũng sẽ là hướng Nam. Và khi rẽ ngược lên hướng Bắc, người thợ săn đã theo đường kinh tuyến đi về phía điểm Cực bắc - tức là trở về nhà.
giữ lời hứa 1 GP nhé
Nhà của người thợ săn đó ở Cực Bắc.
Các đường kinh tuyến trên Trái đất sẽ tụ về hai điểm Cực Bắc và Cực Nam. Tại điểm Cực Bắc, đi về hướng nào thì cũng sẽ là hướng Nam.
Và khi rẽ ngược lên hướng Bắc, người thợ săn đã theo đường kinh tuyến đi về phía điểm Cực bắc - tức là trở về nhà.
Theo đề
=> \(\frac{3x}{4}+5-\frac{2x}{3}+4+\frac{x}{3}-3=\frac{x}{3}+4+\frac{x}{6}+1\)
=> \(\frac{3x}{4}-\frac{2x}{3}+\frac{x}{3}-\frac{x}{3}-\frac{x}{6}=4+1+3-4-5\)
=> \(\frac{9x-8x-2x}{12}=-1\)
=> -1x = -12
=> x = -12 : (-1)
=> x = 12
TA CÓ:
= 1+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+.....+\(\frac{1}{49^2}\)+\(\frac{1}{50^2}\)<1+ \(\frac{1}{1\times2}\)+\(\frac{1}{2\times3}\)+....+\(\frac{1}{49\times50}\)
= 1+ 1- \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + ..... + \(\frac{1}{49}\) - \(\frac{1}{50}\)
= 1+ 1 - \(\frac{1}{50}\)
= 1+ \(\frac{49}{50}\) < 2
Chứng tỏ A < 2
ukm