Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(n>2\), ta có \(I_n=\int\limits^{\dfrac{\pi}{2}}_0\sin^{n-1}x.\sin xdx\)
a) Giả sử các đỉnh đa giác là các điểm biểu diễn hình học các căn bậc n của đơn vị \(P_o=1\). Xét đa thức :
\(f=z^n-1=\left(z-1\right)\left(z-\omega\right)........\left(z-\omega^{n-1}\right),\omega=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}\)
Rõ ràng :
\(n=f'\left(1\right)=\left(1-\omega\right)\left(1-\omega^2\right)...\left(1-\omega^{n-1}\right)\)
Lấy Modun 2 vế ta được kết quả
b) Ta có :
\(1-\omega^k=1-\cos\frac{2k\pi}{n}-i\sin\frac{2k\pi}{n}=2\sin^2\frac{k\pi}{n}-2i\sin\frac{k\pi}{n}\cos\frac{k\pi}{n}\)
\(=2\sin\frac{k\pi}{n}\left(\sin\frac{k\pi}{n}-i\cos\frac{k\pi}{n}\right)\)
Do đó : \(\left|1-\omega^k\right|=2\sin\frac{k\pi}{n},k=1,2,....,n-1\)
Sử dụng a) ta có điều phải chứng minh
c) Xét đa giác đều \(Q_oQ_1.....Q_{2n-1}\) nội tiếp trong đường tròn, các đỉnh của nó là điểm biểu diễn hình học của \(\sqrt{n}\) của đơn vị.
Theo a) \(Q_oQ_1.Q_oQ_2....Q_oQ_{2n-1}=2n\)
Bây giờ xét đa giác đều \(Q_oQ_2....Q_{2n-1}\) ta có \(Q_oQ_2.Q_oQ_4..Q_oQ_{2n-2}=n\)
Do đó \(Q_oQ_1.Q_oQ_3..Q_oQ_{2n-1}=2\) Tính toán tương tự phần b) ta được
\(Q_oQ_{2k-1}=2\sin\frac{\left(2k-1\right)\pi}{2n},k=1,2....n\) và ta có điều phải chứng minh
1. Đặt \(\left\{{}\begin{matrix}u=x\\dv=\dfrac{dx}{sin^2x}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cotx\end{matrix}\right.\)
Do đó I= \(-x.cotx+\int cotxdx\)= \(-xcotx+ln\left|sinx\right|\)
2. Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=\dfrac{dx}{e^x}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-e^{-x}\end{matrix}\right.\)
Do đó I= \(-\left(x+1\right)e^{-x}+\int e^{-x}dx\)=\(-\left(x+1\right)e^{-x}-e^{-x}\)
=\(-\left(x+2\right)e^{-x}\)
\(\int\left(\frac{1}{x}-2x\right)dx=ln\left|x\right|-x^2+C\)
\(\int cos2xdx=\frac{1}{2}sin2x+C\)
\(\int\frac{1}{x^2-4x+4}dx=\int\frac{d\left(x-2\right)}{\left(x-2\right)^2}=-\frac{1}{\left(x-2\right)}+C=\frac{1}{2-x}+C\)
\(\int\limits^4_1\frac{1}{2\sqrt{x}}dx=\sqrt{x}|^4_1=\sqrt{4}-\sqrt{1}=1\)
\(I=\int\limits^1_0\left(2x+1\right)e^xdx\)
Đặt \(\left\{{}\begin{matrix}u=2x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=\left(2x+1\right)e^x|^1_0-\int\limits^1_02e^xdx=3e-1-2e^x|^1_0=e+3\)
Lời giải:
BPT cần chứng minh tương đương \(2\sin x+\tan x-3x>0\)
Xét hàm \(f(x)=2\sin x+\tan x-3x\rightarrow f'(x)=2\cos x+\frac{1}{\cos^2 x}-3\)
Đặt \(\cos x=t\Rightarrow t\in (0;1)\)
Ta có \(f'(x)=2t+\frac{1}{t^2}-3=\frac{(t-1)(2t^2-t-1)}{t^2}>0\forall t\in (0;1)\)
Do đó \(f(x)\) luôn đồng biến với mọi \(x\in \left (0;\frac{\pi}{2}\right)\)
\(\Rightarrow f(x)>f(0)=0\). Ta có đpcm.
Xét với n > 2, ta có:
Dùng tích phân từng phần với u = sin n - 1 x và dv = sinx.dx, ta có:
Vậy I n = n - 1 n I n - 2 , n > 2