Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow x^2-2xy+y^2\ge0\)
\(\Rightarrow x^2+y^2\ge2xy\)
\(\Rightarrow x^2+y^2+x^2+y^2\ge x^2+y^2+2xy\)
\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2\ge2\)
Dấu " = " xay ra khi x=y=1
Vậy MINS=2 khi x=y=1
\(A=a^3-b^3-ab\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-ab\)
\(=a^2+ab+b^2-ab\) (vì \(a-b=1\))
\(=a^2+b^2\)
\(=a^2+\left(a-1\right)^2\)
\(=2a^2-2a+1\)
\(=2\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}\)
\(=2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\)
Dấu "=" xảy ra: \(\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)
\(b=a-1=\frac{1}{2}-1=-\frac{1}{2}\)
Vậy \(A_{min}=\frac{1}{2}\Leftrightarrow a=\frac{1}{2},b=-\frac{1}{2}\)
Chúc bạn học tốt.
Ta có: \(abc\le\frac{\left(a+b+c\right)^3}{27}\) ; \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Mà \(a^2+b^2+c^2=3abc\)
=>\(\frac{\left(a+b+c\right)^2}{3}\le\frac{\left(a+b+c\right)^3}{27}.3\)
=> \(a+b+c\ge3\)
Áp dụng bđt bunhia dạng phân thức ta có:
\(M\ge\frac{\left(a+b+c\right)^2}{a+b+c+6}\)
Đặt \(a+b+c=x\left(x\ge3\right)\)
=> \(M\ge\frac{x^2}{x+6}\)
Xét \(\frac{x^2}{x+6}\ge\frac{5}{9}x-\frac{2}{3}\)
<=>\(x^2\ge\frac{5}{9}x^2+\frac{8}{3}x-4\)
<=>\(\left(\frac{2}{3}x-2\right)^2\ge0\)(luôn đúng)
=> \(M\ge\frac{5}{9}x-\frac{2}{3}\ge\frac{5}{9}.3-\frac{2}{3}=1\)
=>\(MinM=1\)xảy ra khi a=b=c=1
Sử dụng giả thiết ax−by=√3ax−by=3 ta có:
(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3
Áp dụng bất đẳng thức CauchyCauchy , suy ra:
a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3
Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by
Ta có:
(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9
⇒2√x2+3+x≥3⇒2x2+3+x≥3
Vậy MinT=3MinT=3
Sử dụng giả thiết ax−by=√3ax−by=3 ta có:
(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3
Áp dụng bất đẳng thức CauchyCauchy , suy ra:
a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3
Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by
Ta có:
(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9
⇒2√x2+3+x≥3⇒2x2+3+x≥3
Vậy MinT=3MinT=3
a)+) \(A=\sqrt{2x^2-3x+1}=\sqrt{2x^2-2x-x+1}\)
\(=\sqrt{2x\left(x-1\right)-\left(x-1\right)}=\sqrt{\left(2x-1\right)\left(x-1\right)}\)
Để A có nghĩa thì \(\hept{\begin{cases}2x-1\ge0\\x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)
hoặc \(\hept{\begin{cases}2x-1\le0\\x-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\le1\end{cases}}\Leftrightarrow x\le\frac{1}{2}\)
A có nghĩa\(\Leftrightarrow\orbr{\begin{cases}x\ge1\\x\le\frac{1}{2}\end{cases}}\)
+) B có nghĩa\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
c) \(A=B\Leftrightarrow\sqrt{\left(x-1\right)\left(2x-1\right)}=\sqrt{x-1}.\sqrt{2x-1}\)
\(\Leftrightarrow\hept{\begin{cases}x-1\ge0\\2x-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge\frac{1}{2}\end{cases}}\Leftrightarrow x\ge1\)
Vậy \(x\ge1\)thì A = B
d) \(x\le\frac{1}{2}\)
\(a+b=1\Leftrightarrow a=1-b\\ M=a^3+b^3=a^3+\left(1-a\right)^3\\ =a^3+1-3a+3a^2-a^3\\ =3a^2-3a+1=3\left(a^2-a+\dfrac{1}{4}+\dfrac{1}{12}\right)=3\left(a-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow a=b=\dfrac{1}{2}\)
thanks bn nha