Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải các pt bậc 2 sau đây :
\(x^2-4x+8=0\)
\(2x^2+6x-4=0\)
\(8x^2-4x+2=0\)
\(5\left(x+3\right)^2+x+4=0\)
mk ra cho các bn làm nên mk lm mẫu 1 bài y hệt ntn cho các bn tham khảo trc nhé xD
\(4x^2-7x+3=0\)
Ta có : \(\Delta=b^2-4ac=\left(-7\right)^2-4.4.3=49-48=1\)
Do \(\Delta>0\)nên pt có 2 nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{7+1}{8}=1\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{7-1}{8}=\frac{6}{8}=\frac{3}{4}\)
Vậy ...
\(2x^2+6x-4=0\)
Ta có : \(\Delta=b^2-4ac=6^2-4.2.4=36-32=4\)
Do \(A>0\)nên pt có 2 nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-6+4}{4}=-\frac{1}{2}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-6-4}{4}=-\frac{5}{2}\)
số ko đẹp lắm :P đúng ko cj
Câu 1:
\(\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}=2\left(x+1\right)\)
- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) pt vô nghiệm
- Nhận thấy \(x=-1\) là 1 nghiệm
- Nếu \(x>-1\) kết hợp ĐKXĐ các căn thức ta được \(x\ge1\), pt tương đương:
\(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2x+6+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4x+4\)
\(\Leftrightarrow2\sqrt{2x^2+4x-6}=x-1\)
\(\Leftrightarrow4\left(2x^2+4x-6\right)=\left(x-1\right)^2\)
\(\Leftrightarrow7x^2+18x-25=0\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{25}{7}< 0\left(l\right)\end{matrix}\right.\)
Vậy pt có nghiệm \(x=\pm1\)
Câu 2:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=2\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\) pt trở thành:
\(\sqrt{x-1}+1-\sqrt{x-1}+1=2\Leftrightarrow2=2\) (luôn đúng)
- Nếu \(1\le x< 2\) pt trở thành:
\(\sqrt{x-1}+1-1+\sqrt{x-1}=2\Leftrightarrow x=2\left(l\right)\)
Vậy nghiệm của pt là \(x\ge2\)
Câu 3:
Bình phương 2 vế ta được:
\(2x^2+2x+5+2\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2x^2+2x+9\)
\(\Leftrightarrow\sqrt{\left(x^2+x+4\right)\left(x^2+x+1\right)}=2\)
\(\Leftrightarrow\left(x^2+x+4\right)\left(x^2+x+1\right)=4\)
Đặt \(x^2+x+1=a>0\) pt trở thành:
\(a\left(a+3\right)=4\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Câu 5:
ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
Mà \(VT=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=1\)
\(\Rightarrow VT\ge VP\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\le0\end{matrix}\right.\) \(\Rightarrow5\le x\le10\)
Vậy nghiệm của pt là \(5\le x\le10\)
Làm hơi tắt xíu, có gì ko hiểu cmt nha :>
\(a.\sqrt{x-1}=3\left(ĐK:x\ge1\right)\Leftrightarrow x-1=9\Leftrightarrow x=10\)
\(b.\sqrt{x^2-4x+4}=2\\ \Leftrightarrow\sqrt{\left(x-2\right)^2}=2\\ \Leftrightarrow\left|x-2\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-2=2\left(x\ge2\right)\\2-x=2\left(x< 2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
\(c.\sqrt{25x^2-10x+1}=4x-9\\ \Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x-9\\ \Leftrightarrow\left|5x-1\right|=4x-9\\\Leftrightarrow \left[{}\begin{matrix}5x-1=4x-9\left(x\ge\frac{1}{5}\right)\\1-5x=4x-9\left(x< \frac{1}{5}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-8\left(ktm\right)\\x=\frac{10}{9}\left(ktm\right)\end{matrix}\right.\)
\(d.\sqrt{x^2+2x+1}=\sqrt{x+1}\left(ĐK:x\ge-1\right)\\ \Leftrightarrow x^2+2x+1=x+1\\ \Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
e. ĐK: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\\ \Leftrightarrow\sqrt{x-3}=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\)
Câu cuối chưa nghĩ ra, sorry :<
a) \(\sqrt{9-12x+4x^2}=4+x\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4+x\)
\(\Leftrightarrow\left|3-2x\right|=4+x\)
th1: \(3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow\Leftrightarrow x\le\dfrac{3}{2}\)
\(\Rightarrow\left|3-2x\right|=4+x\Leftrightarrow3-2x=4+x\Leftrightarrow3x=-1\Leftrightarrow x=\dfrac{-1}{3}\left(tmđk\right)\)
th2: \(3-2x< 0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)
\(\Rightarrow\left|3-2x\right|=4+x\Leftrightarrow2x-3=4+x\Leftrightarrow x=7\left(tmđk\right)\)
vậy \(x=\dfrac{-1}{3};x=7\)
b) \(\sqrt{4-4x+x^2}=\left(x-1\right)^2+x-6\)
\(\Leftrightarrow\sqrt{\left(2-x\right)^2}=x^2-2x+1+x-6\)
\(\Leftrightarrow\left|2-x\right|=x^2-x-5\)
th1: \(2-x\ge0\Leftrightarrow x\le2\)
\(\Rightarrow\left|2-x\right|=x^2-x-5\Leftrightarrow2-x=x^2-x-5\)
\(\Leftrightarrow x^2=7\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{7}\left(loại\right)\\x=-\sqrt{7}\left(tmđk\right)\end{matrix}\right.\)
th2: \(2-x< 0\Leftrightarrow x>2\)
\(\Rightarrow\left|2-x\right|=x^2-x-5\Leftrightarrow x-2=x^2-x-5\)
\(\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\left(tmđk\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
vậy \(x=-\sqrt{7};x=3\)
a) \(\sqrt{9-12x+4x^2}=4+x\)
\(\Leftrightarrow\sqrt{\left(3-2x\right)^2}=4+x\)
\(\Leftrightarrow\left|3-2x\right|=4+x\)
\(\Leftrightarrow\left[{}\begin{matrix}3-2x=4+x\\3-2x=-4-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=7\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{1}{3};x_2=7\).
b) \(\sqrt{4-4x+x^2}=\left(x-1\right)^2+x-6\)
\(\Leftrightarrow\sqrt{\left(2-x\right)^2}=x^2-2x+1+x-6\)
\(\Leftrightarrow\left|2-x\right|=x^2-x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=x^2-x-5\\2-x=-x^2+x+5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=7\\x^2=2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\left(l\right)\\x=-\sqrt{7}\\x=3\\x=-1\left(l\right)\end{matrix}\right.\)
Vậy \(x_1=-\sqrt{7};x_2=3\).
1) \(\sqrt{3-x}=3x-5\)
\(\Leftrightarrow\left(\sqrt{3-x}\right)^2=\left(3x-5\right)^2\)
\(\Leftrightarrow3-x=9^2-30x+25\)
\(\Rightarrow x=\frac{11}{9};x=2\)
2) \(x-\sqrt{4x-3}\)
\(\Leftrightarrow x-\sqrt{4x-3}-x=2x-x\)
\(\Leftrightarrow-\sqrt{4-x}=2-x\)
\(\Leftrightarrow\left(-\sqrt{4x-3}\right)^2=\left(2-x\right)^2\)
\(\Leftrightarrow4x-3=4-4x+x^2\)
\(\Rightarrow x=1;x=7\)
4) \(\sqrt{x+1}=x-1\)
\(\Leftrightarrow\left(\sqrt{x+1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x+1=x^2-2x+1\)
\(\Leftrightarrow x=3;x=0\)
\(\Rightarrow x=3;x=0\)
5) \(\sqrt{x^2-1}=x+1\)
\(\Leftrightarrow\left(\sqrt{x^2-1}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow x^2-1=x^2+2x+1\)
\(\Rightarrow x=-1\)
6) \(\sqrt{x^2-4x+3}=x-2\)
\(\Leftrightarrow\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)
\(\Leftrightarrow x^2-4x+3=x^2-4x+4\)
\(\Leftrightarrow x=3;x=4\)
\(\Rightarrow x=3;x=4\)
7) \(\sqrt{x^2-1}=x-1\)
\(\Leftrightarrow\left(\sqrt{x^2-1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x^2-1=x^2-2x+1\)
\(\Rightarrow x=1\)
8) \(x-2\sqrt{x-1}=16\)
\(\Leftrightarrow x-2\sqrt{x-1}-x=16-x\)
\(\Leftrightarrow-2\sqrt{x-1}=16-x\)
\(\Leftrightarrow\left(-2\sqrt{x-1}\right)^2=\left(16-x\right)^2\)
\(\Leftrightarrow4x-4=256-32x+x^2\)
\(\Leftrightarrow x=26;x=10\)
\(\Rightarrow x=26;x=10\)
9) \(\sqrt{5-x^2}=x-1\)
\(\Leftrightarrow\left(\sqrt{5-x^2}\right)^2=\left(x+1\right)^2\)
\(\Leftrightarrow5-x^2=x^2-2x+1\)
\(\Leftrightarrow x=2;x=-1\)
\(\Rightarrow x=2;x=-1\)
10) \(x-\sqrt{4x-3}=2\)
\(\Leftrightarrow x-\sqrt{4x-3}-x=2-x\)
\(\Leftrightarrow-\sqrt{4x-3}=2-x\)
\(\Leftrightarrow\left(-\sqrt{4x-3}\right)^2=\left(2-x\right)^2\)
\(\Leftrightarrow4x-3=4-4x+x^2\)
\(\Leftrightarrow x=7;x=1\)
\(\Rightarrow x=1;x=7\)
Mk ko chắc
a) \(\sqrt{1-x}=\sqrt[3]{8}\) ( ĐK: \(x\le1\) )
\(\Leftrightarrow\sqrt{1-x}=2\)
\(\Leftrightarrow1-x=4\)
\(\Leftrightarrow x=-3\) ( Thỏa mãn )
b) \(\sqrt{4x^2-12x+9}=x+1\) ( ĐK : \(x\ge-1\) )
\(\Leftrightarrow\sqrt{\left(2x\right)^2-2.2x.3+3^2}=x+1\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x+1\)
\(\Leftrightarrow\left|2x-3\right|=x+1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=x+1\\3-2x=x+1\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}}\) ( Thỏa mãn )
c) \(x+\sqrt{x}-2=0\) ( ĐK : \(x\ge0\) )
\(\Leftrightarrow\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow x=1\) ( Thỏa mãn )
+) ĐKXĐ : \(x\le1\)
\(\sqrt{1-x}=\sqrt[3]{8}\)
\(\Leftrightarrow\sqrt{1-x}=2\)
\(\Leftrightarrow1-x=4\)
\(\Leftrightarrow x=-3\left(TM\right)\)
+) \(\sqrt{4x^2-12x+9}=x+1\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x+1\)
\(\Leftrightarrow\left|2x-3\right|=x+1\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=x+1\left(x\ge\frac{3}{2}\right)\\2x-3=-x-1\left(x< \frac{3}{2}\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-x=3+1\\2x+x=3-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\3x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}\left(TM\right)}}\)
+) ĐKXĐ : \(x\ge0\)
\(x+\sqrt{x}-2=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=2\)
+) \(\hept{\begin{cases}\sqrt{x}=1\\\sqrt{x}+1=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=1\end{cases}\Leftrightarrow}x=1\left(TM\right)}\)
+) \(\hept{\begin{cases}\sqrt{x}=2\\\sqrt{x}+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\x=0\end{cases}}}\left(TM\right)\)
a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)
Có: \(VT=\left|1-x\right|+\left|x-2\right|\)
\(\ge\left|1-x+x-2\right|=3=VP\)
Khi \(x=0;x=3\)
b)\(\sqrt{x^2-10x+25}=3-19x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)
\(\Leftrightarrow\left|x-5\right|=3-19x\)
\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)
\(\Leftrightarrow-360x^2+104x+16=0\)
\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)
\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)
c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)
\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)
\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)
\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)
Bài 1: Giải phương trình
a) ĐKXĐ: \(x\ge3\)
Ta có: \(\sqrt{100\cdot\left(x-3\right)}=\sqrt{20}\)
\(\Leftrightarrow\left|100\cdot\left(x-3\right)\right|=\left|20\right|\)
\(\Leftrightarrow100\cdot\left|x-3\right|=20\)
\(\Leftrightarrow\left|x-3\right|=\frac{1}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=\frac{1}{5}\\x-3=-\frac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{16}{5}\left(nhận\right)\\x=\frac{14}{5}\left(loại\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{16}{5}\right\}\)
b) Ta có: \(\sqrt{\left(x-3\right)^2}=7\)
\(\Leftrightarrow\left|x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)
Vậy: S={10;-4}
c) Ta có: \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5}{2};\frac{-7}{2}\right\}\)
a) đặt \(\sqrt{x+6}=a\ge0\)
\(\sqrt{x-2}=b\ge0\)
Ta có: \(\hept{\begin{cases}\left(a-b\right)\left(1+ab\right)=8\\a^2-b^2=8\end{cases}}\)
\(\Rightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab-a-b+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
Đến đây tự làm nhé
\(ĐK:x\ge2\\ PT\Leftrightarrow2\sqrt{x-2}+\sqrt{x-2}=6\\ \Leftrightarrow3\sqrt{x-2}=6\\ \Leftrightarrow\sqrt{x-2}=2\\ \Leftrightarrow x-2=4\\ \Leftrightarrow x=6\left(tm\right)\)