Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)điều kiện x2-9>=0
<=> \(\sqrt{x+3}\left(\sqrt{x-3}-5\right)=0\)
<=> \(\left[\begin{array}{nghiempt}x+3=0\\\sqrt{x-3}=5\end{array}\right.\)<=>\(\left[\begin{array}{nghiempt}x=-3\\x=28\end{array}\right.\)(hai nghiệm dều thỏa)
b dễ làm trước,a ko biết làm ):
b)\(\sqrt{2+\sqrt{x}}=3\)
ĐK : \(\sqrt{x}=7\)
\(x=49\)
\(\sqrt{2+\sqrt{49}}=3\Rightarrow\sqrt{2+7}=3\Leftrightarrow\sqrt{9}=3\Rightarrow3=3\)
\(\sqrt{\frac{1}{4}x^2+x+1}-\sqrt{6-2\sqrt{5}}=0\)
<=> \(\sqrt{\left(\frac{1}{2}x\right)^2+2\cdot\frac{1}{2}x\cdot1+1^2}-\sqrt{5-2\sqrt{5}+1}=0\)
<=> \(\sqrt{\left(\frac{1}{2}x+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=0\)
<=> \(\left|\frac{1}{2}x+1\right|-\left|\sqrt{5}-1\right|=0\)
<=> \(\left|\frac{1}{2}x+1\right|-\left(\sqrt{5}-1\right)=0\)
<=> \(\left|\frac{1}{2}x+1\right|=\sqrt{5}-1\)
<=> \(\orbr{\begin{cases}\frac{1}{2}x+1=\sqrt{5}-1\\\frac{1}{2}x+1=1-\sqrt{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4+2\sqrt{5}\\x=-2\sqrt{5}\end{cases}}\)
b) \(\sqrt{2+\sqrt{x}}=3\)
ĐK : x ≥ 0
Bình phương hai vế
pt <=> \(2+\sqrt{x}=9\)
<=> \(\sqrt{x}=7\)
<=> \(x=49\left(tm\right)\)
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
\(a)x-\sqrt{2}+3\left(x^2-2\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left[1+3\left(x+\sqrt{2}\right)\right]=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(1+3x+3\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\1+3x+3\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\2x=-3\sqrt{2}-1\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\frac{3\sqrt{2}-1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\left(\frac{-3\sqrt{2}+1}{2}\right)\end{cases}}\)
_Không biết có sai ở đâu không mà kết quả hơi kỳ , bạn nhớ xem lại nhá!_
\(b)x^2-5=\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
\(\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)-\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{5}\right)\left[\left(x-\sqrt{5}\right)-\left(2x-\sqrt{5}\right)\right]=0\)
\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}-2x+\sqrt{5}\right)=0\)
\(\Leftrightarrow-x.\left(x+\sqrt{5}\right)=0\)
_Minh ngụy_
\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x+\sqrt{5}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\sqrt{5}\end{cases}}}\)
a, bình phương rồi phân tích là ra
b, nhân chéo rồi phá ngoặc
\(\sqrt{x^2-9}-5\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}-5\sqrt{x+3}=0\)
ĐK: \(x+3\ge0\Leftrightarrow x\ge-3\) và \(x-3\ge0\Leftrightarrow x\ge3\) suy ra điều kiện là X >=3
PT \(\Leftrightarrow\sqrt{\left(x+3\right)}\left(\sqrt{x+3}-5\right)=0\Leftrightarrow\sqrt{x+3}=0hoặc\left(\sqrt{x+3}-5\right)=0\)
+) \(\sqrt{x+3}=0\Leftrightarrow x=-3loai\)
+) \(\sqrt{x-3}-5=0\Leftrightarrow\sqrt{x-3}=5\Leftrightarrow x-3=25\Leftrightarrow x=28\)
Vậy x = 28
\(\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}+3}\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)Điều kiện x>=0
\(\Leftrightarrow x+\sqrt{x}-6=x-1\Leftrightarrow\sqrt{x}=5\Leftrightarrow x=25\)
Vậy x = 25
a/ \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐKXĐ : \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow2\sqrt{x-1}=2\Leftrightarrow x-1=1\Leftrightarrow x=2\)
b/ \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)
<=> 3 = 0 (vô lý)
=> pt vô nghiệm.
c/ \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\) (ĐKXĐ : x>-5/7)
\(\Leftrightarrow9x-7=7x+5\Leftrightarrow2x=12\Leftrightarrow x=6\)
d/ \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\) (ĐKXĐ : \(x\ge\frac{3}{2}\))
\(\Leftrightarrow2x-3=4\left(x-1\Leftrightarrow\right)2x=1\Leftrightarrow x=\frac{1}{2}\) (loại)
Vậy pt vô nghiệm.
Đăng 1 lúc mà nhiều thế. Lần sau đăng 1 câu thôi b.
b/ \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)
Ta có: \(VT\ge1+2+\sqrt{5}=3+\sqrt{5}\)
Dấu = xảy ra khi \(x=2\)
c/ \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=\sqrt{3-\left(x-1\right)^2}+\sqrt{1-\left(x+3\right)^2}\)
\(\le1+\sqrt{3}\)
Dấu = không xảy ra nên pt vô nghiệm
Câu d làm tương tự
\(a,\sqrt{x^2-4}-x^2+4=0\)
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow x^2-4=\left(x-4\right)^2\)
\(\Leftrightarrow x^2-4-x^4+8x^2-16=0\)
\(\Leftrightarrow-x^4-7x^2-20=0\)
\(\Leftrightarrow-\left(x^4+7x^2+\frac{49}{4}\right)-\frac{31}{4}=0\)
\(\Leftrightarrow-\left(x^2+\frac{7}{2}\right)^2=\frac{31}{4}\)
\(\Leftrightarrow\left(x^2+\frac{7}{2}\right)=-\frac{31}{4}\)
\(\Rightarrow\)pt vô nghiệm
a. \(x^2-2\sqrt{5}x+5=0\)
<=> \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=0\)
<=> \(\left(x-\sqrt{5}\right)^2=0\)
<=> \(x-\sqrt{5}=0\)
<=> \(x=\sqrt{5}\)
b. \(\sqrt{x+3}=1\) ĐK: x \(\ge-3\)
<=> x + 3 = 12
<=> x = 1 - 3
<=> x = -2 (TM)
a: Ta có: \(x^2-2x\sqrt{5}+5=0\)
\(\Leftrightarrow x-\sqrt{5}=0\)
hay \(x=\sqrt{5}\)
b: Ta có: \(\sqrt{x+3}=1\)
\(\Leftrightarrow x+3=1\)
hay x=-2