K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

H=2+22+23+...+260

H=(2+22+23)+...+(258+259+260)

H=2.(1+2+22)+...+258.(1+2+22)

H=2.7+...+258.7

H=7.(2+...+258

=>H chia hết cho 7

H=2+22+23+...+260

H=(2+22+23+24)+...+(257+258+259+260)

H=2.(1+2+22+23)+...+257.(1+2+22+23)

H=2.15+....+257.15

H=15.(2+...+257)

=>H chia hết cho 15

11 tháng 10 2016

Ta có:

H = 2 + 22 + 23 + ... + 260

H = (2 + 22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260)

H = 2.(1 + 2 + 22) + 24.(1 + 2 + 22) + ... + 258.(1 + 2 + 22

H = 2.7 + 24.7 + ... + 258.7

H = (2 + 24 + ... + 258) . 7

Vì (2 + 24 + ... + 258) . 7 chia hết cho 7 nên H chia hết cho 7 (đpcm)

Ta có:

H = 2 + 22 + 23 + ... + 260

H = (2 + 22 + 23 + 24) + ... + (257 + 258 + 259 + 260)

H = 2.(1 + 2 + 22 + 23) + ... + 257.(1 + 2 + 22 + 23)

H = 2.(1 + 2 + 4 + 8) + ... + 257.(1 + 2 + 4 + 8)

H = 2.15 + ... + 257.15

H = (2 + ... + 257).15

Vì (2 + ... + 257).15 chia hết cho 15 nên H chia hết cho 15 (đpcm)

7 tháng 7 2015

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(A=3\left(2+2^3+2^5+...+2^{59}\right)=7\left(2+2^4+2^7+...+2^{55}+2^{58}\right)\)

=> A chia hết cho 3 và A cũng chia hết cho 7

16 tháng 10 2019

A = 2+21+22+23+...+260

A = 2+2+2.2+2.2.2+........+2.2.2............2

Vì tất cả các số của tổng A là 2=> A chia hết cho 2

b) A = 2+21+22+23+...+260

   A = 2. ( 1+1+22+23)+ 25 . ( 1+1+22+23)+ ..........+ 256. ( 1+1+22+23)

  A = 2.14+ 25.14+..........+256.14

A= 14. ( 2+ 25+.........+256) A chia hết cho 7 vì 14 chia hêt cho 7

c) A = 2+21+22+23+...+260

   A = 2. ( 1+1+22+23+ 24)+ 26 . ( 1+1+22+23+ 24)+ ..........+ 255. ( 1+1+22+23+ 24)

  A = 2.30+ 26.30+..........+255.30

A= 30. ( 2+ 26+.........+255) A chia hết cho 15 vì 30 chia hết cho 15

7 tháng 1 2021

a) P=2+22+23+24+...+260 \(⋮\) 21 và 15

\(\Rightarrow\)P = 22+23+24+25+...+261  

\(\Rightarrow\) (2P - P) = 261 - 2

\(\Rightarrow\) P = 261 - 2 = 2.(260 - 1)

Để P \(⋮\) 21 và 15 thì (260 - 1) \(⋮\)21 và 15

tức là (260 - 1) \(⋮\)3; 5; 7

*Ta có 260 - 1 = (24)15 = 1615 - 1

          = (16 - 1).(1+16+162+163+...+1614)

          = 15.(1+16+162+163+...+1614\(⋮\) 15  

Vậy  P \(⋮\) 15  (1)

    * Ta có 260 - 1 = (26)10 - 1 = 6410 - 1

                = (64 - 1).(1+64+642+643+...+64)

                = 63 \(⋮\) (1+64+642+643+...+64)

                = 21.3.(1+64+642+643+...+64\(⋮\) 21

         P \(⋮\)21   (2) 

    Từ (1) và (2) \(\Rightarrow\)  P \(⋮\)15 và 21

  

 
AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Lời giải:

CM $A\vdots 7$:

$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$

$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$

$=(1+2+2^2)(2+2^4+....+2^{58})$

$=7(2+2^4+....+2^{58})\vdots 7$

------------------------------

CM $A\vdots 3$:

$A=(2+2^2)+(2^3+2^4)+....+(2^{59}+2^{60})$

$=2(1+2)+2^3(1+2)+....+2^{59}(1+2)$

$=(1+2)(2+2^3+...+2^{59})=3(2+2^3+....+2^{59})\vdots 3$

-----------------------------

CM $A\vdots 15$:

$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^{57}+2^{58}+2^{59}+2^{60})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{57}(1+2+2^2+2^3)$

$=(1+2+2^2+2^3)(2+2^5+...+2^{57})$

$=15(2+2^5+...+2^{57})\vdots 15$

20 tháng 12 2018

A = 2 + 22 +23 + 24 +...+260 ( có 60 số hạng)

A = (2+22 +23) + (24+25+26) + ...+ (258 +259 + 260)

A = 2.(1+2+2^2) + 2^4.(1+2+2^2) + ...+ 2^58.(1+2+2^2)

A = 2.7 + 2^4.7 + ...+ 2^58.7

A = 7.(2+2^4+...+2^58) chia hết cho 7

A chia hết cho 15 thì bn làm tương tự nha! Gợi ý: nhóm 4 số hạng với nhau

20 tháng 12 2018

cam on ban nha