K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

a, Ta có góc SMH=90°; góc SNH=90°( góc nội tiếp chắn 1/2 đường tròn)

xét tứ giác SMHN có 

góc SMH+ SNH=90°+90°=180°

suy ra SMHN nội tiếp

b, ta có góc SMN+NMB=90°

góc NBA+NAB=90°

mà góc NMB=NAB (góc nội tiếp chắn cung NB)

suy ra góc SMN = NBA

xét hai tam giác SMN và SBA có 

góc S Chung

góc SMN=SBA (cmt)

suy ra hai tam giác đó đồng dạng

suy ra SM/SN=SB/SA

suy ra SM.SA=SN.SB(đpcm)

c,vì góc MON=70° suy ra cung MN=70°(góc ở tâm)

ta có cung AB=180°

mà góc ASB là góc ngoài chắn cung nhỏ MN và cung AB

suy ra góc ASB=(180-70)/2=55°

3 tháng 11 2016

a)
ta có SA= SB(t/c tiếp tuyến cắt nhau)
nên tam giác SAB cân ở S
do đó SO vừa là phân giác vừa là đường cao nên SO vuông góc AB
I là trung điểm của MN nên OI vuông góc MN
do đó góc SHE=SIE = 90 độ
hai điểm H và I cùng nhìn đoạn SE dưới 1 góc vuông nên tứ giác IHSE nội tiếp

b) SOI đồng dạng với EOH vì có O chung
$\widehat{SHE}=\widehat{SIE}$ =90 độ chứng minh trên
suy ra $\dfrac{OI}{OH}$ = $\dfrac{OS}{OE}$
mà OH.OS = OB^2 = R^2(hệ thức lượng trong tam giác vuông SOB
nên OI.OE=R^2 (DPCM)

BM ⊥ SA ( = vì là góc nội tiếp chắn nửa đường tròn).

Tương tự, có: AN ⊥ SB

Như vậy BM và AN là hai đường cao của tam giác SAB và H là trực tâm.

Suy ra SH ⊥ AB.

(Trong một tam giác ba đường cao đồng quy)



2 tháng 4 2017

Chiu thoi ! Kho qua ! Co ai giai duoc ko ?

2 tháng 4 2017

- Đề bài chắc chắn đúng chứ bạn? Mình tưởng phải có điều kiện đặc biệt ràng buộc C thì tam giác MAB mới cân được chứ nhỉ?

1 tháng 3 2022

Xét (O) có 

^AMB = ^ANB = 900 ( góc nt chắn nửa đường tròn ) 

nên AN ; BM lần lượt là đường cao 

mà AN giao BN = H 

=> H là trực tâm => SH là đường cao thứ 3 

Vậy SH vuông AB 

1 tháng 3 2022

Bạn ơi vẽ hình sao v ?

 

20 tháng 2 2017

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AN ⊥ NB

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AM ⊥ MB

ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.

⇒ A là trực tâm của ΔSHB.

⇒ AB ⊥ SH (đpcm)

Kiến thức áp dụng

+ Góc nội tiếp chắn nửa đường tròn là góc vuông.

+ Trong một tam giác, ba đường cao đồng quy tại trực tâm.

6 tháng 11 2019

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AN ⊥ NB

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AM ⊥ MB

ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.

⇒ A là trực tâm của ΔSHB.

⇒ AB ⊥ SH (đpcm)