Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có :
\(ƯCLN\left(m+n\right)=1\)( Vì m và n là 2 số nguyên tố cùng nhau )
\(\RightarrowƯCLN\left(m^2+n^2\right)=1\)
\(\Rightarrow m=n=1\)
và m2 + n2 chia hết cho m x n
Nên m = n = 1
Chúc bạn học tốt =))
a chia hết cho m
a chia hết cho n
Nên a là BC(m;n)=m.n suy ra a chia hết cho m.n
điều kiên tồn tại vt >0=> m > 1
=> \(p^2=\left(m+n\right)\left(m-1\right)\left(1\right)\)
vt là bp số nguyên tố nên vp xảy ra các TH
TH1:\(p=\left(m+n\right)=\left(m-1\right)=>n=-1\)( loại n là số tự nhiên)
Th2: một trong 2 số phải bằng 1 có m>1 => m+n>1
=> m-1=1 => m=2
=>\(p^2=\left(n+2\right)\left(2-1\right)=n+2\left(dpcm\right)\)
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
a chia hết cho m;n =>a là BC(m;n)
Mà m;n là 2 số nguyên tố cùng nhau =>BCNN(m;n)=m.n
=>BC(m;n)=B(m.n)={0;mn;2mn;3mn;4mn;.....}
=>a\(\in\){0;mn;2mn;3mn;4mn;...}
=>a chia hết cho mn(đpcm)