Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N J G K I
a) Ta thấy \(\widehat{MAC}=\widehat{MAB}+\widehat{BAC}=90^o+\widehat{BAC}=\widehat{CAN}+\widehat{BAC}=\widehat{BAN}\)
Xét tam giác MAC và BAN có:
AM = AB
AC = AN
\(\widehat{MAC}=\widehat{BAN}\)
\(\Rightarrow\Delta MAC=\Delta BAN\left(c-g-c\right)\)
b) Do \(\Delta MAC=\Delta BAN\Rightarrow MC=BN\) (Hai cạnh tương ứng)
Ta cũng có \(\widehat{AMC}=\widehat{ABN}\)
Gọi giao điểm của AB và MC là J, của MC và BD là G.
Xét tam giác vuông MAJ ta có \(\widehat{AMJ}+\widehat{MJA}=90^o\)
Mà \(\widehat{AMJ}=\widehat{JBG};\widehat{MJA}=\widehat{BJG}\) (Hai góc đối đỉnh)
nên \(\widehat{JBG}+\widehat{BJG}=90^o\Rightarrow\widehat{JGB}=90^o\) hay \(MC\perp BN\)
c) Ta thấy ngay \(\Delta AMK=\Delta ABI\left(c-g-c\right)\Rightarrow AK=AI\) (Hai cạnh tương ứng)
Ta cũng có \(\Delta AIN=\Delta AKC\left(c-c-c\right)\Rightarrow\widehat{IAN}=\widehat{KAC}\)
Vậy thì \(\widehat{IAK}=\widehat{IAC}+\widehat{CAK}=\widehat{IAC}+\widehat{IAN}=\widehat{CAN}=90^o\)
Suy ra \(AI\perp AK\)
M N P E F K I
Giải:
a) Xét \(\Delta IMN,\Delta IPK\) có:
\(IN=IK\left(gt\right)\)
\(\widehat{NIM}=\widehat{PIK}\) ( đối đỉnh )
\(IM=IP\left(=\frac{1}{2}MP\right)\)
\(\Rightarrow\Delta IMN=\Delta IPK\left(c-g-c\right)\)
\(\Rightarrowđpcm\)
b) Vì \(\Delta IMN=\Delta IPK\)
\(\Rightarrow MN=PK\) ( cạnh t/ứng )
\(\Rightarrowđpcm\)
c) Vì \(\Delta IMN=\Delta IPK\)
\(\Rightarrow\widehat{NMI}=\widehat{KPI}\)
hay \(\widehat{EMI}=\widehat{FPI}\)
Xét \(\Delta IEM,\Delta IFP\) có:
\(\widehat{EMI}=\widehat{FPI}\left(cmt\right)\)
\(IM=IP\left(=\frac{1}{2}MP\right)\)
\(\widehat{EIM}=\widehat{FIP}\) ( đối đỉnh )
\(\Rightarrow\Delta IEM=\Delta IFP\left(g-c-g\right)\)
\(\Rightarrow\widehat{MEI}=\widehat{PFI}\)
\(\Rightarrow\widehat{PFI}=90^o\)
\(\Rightarrow IF\perp KP\left(đpcm\right)\)
Vậy...
XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ
AM LÀ CẠNH CHUNG
AB=AC (VÌ TAM GÁC ABC CÂN TẠI A)
\(\widehat{B}=\widehat{C}\)
=>TAM GIÁC ABM=TAM GIÁC ACM (CGC)
=>MB=MC(CT Ư)
B;TA CÓ MB=MC (TMT)
=>MB+MC=24
=>MB=MC=24/2=12
TA CÓ TAM GIÁC ABM VUÔNG TẠI M
=>\(AB^2=BM^2+AM^2\)\
=>\(AM^2=AB^2-BM^2=>AM^2=20^2-12^2\)
=>\(AM^2=256=>AM=16\)
C;XÉT TAM GIÁC AKM VÀ TAM GIÁC AHM CÓ
AM LÀ CẠNH CHUNG
\(\widehat{H}=\widehat{K}=90^0\)
\(\widehat{A}\)CHUNG
=> TAM GIÁC AHM=TAM GIÁC AKM (GCG)
=>AH=AK=>\(\Delta AHK\) CÂN TẠI A
D;TỰ LÀM
Bài 1:
Ta có hình vẽ: A B C K H I 1 1 1 a) Ta có: AB \(\perp\) AC
HK \(\perp\) AC
=> AB // HK
b) Xét 2 tam giác vuông AHK và tam giác AHI có:
HK = HI (gt)
AH là cạnh chung
=> tam giác AHK = tam giác AHI (2 cạnh góc vuông)
=> AK = AI (2 cạnh tương ứng)
=> tam giác AKI cân tại A
c) Vì AB // HK nên
góc B1 = K1 (so le trong)
mà góc K1 = góc I1 (vì tam giác AHK = tam giác AHI)
=> góc B1 = I1
Vậy góc BAK = góc AIK
d) Xét 2 tam giác vuông CHK và tam giác CHI có:
HK = HI (gt)
CH là cạnh chung
=> tam giác CHK = tam giác CHI (2 cạnh góc vuông)
=> CH = CI (2 cạnh tương ứng)
Xét 2 tam giác AIC và tam giác AKC có:
AK = AH (cmt)
CH = CI (cmt)
AC là cạnh chung
=> tam giác AIC = tam giác AKC (c-c-c)
Bài 3:
Ta có hình vẽ: A B C I H K 10 10 12 a) Xét 2 tam giác vuông ACI và tam giác BCI có:
CA = CB (=10 cm)
CI là cạnh chung
=> tam giác ACI = tam giác BCI (cạnh huyền- cạnh góc vuông)
=> AI = BI (2 cạnh tương ứng)
b) Ta có: AI + BI = AB
mà AI = BI (cmt)
AB = 12 cm
=> AI = BI = \(\dfrac{12}{2}\) = 6 cm
Xét tam giác ACI vuông tại I áp dụng định lý Pytago có:
\(CA^2 = AI^2 + CI^2 \)
hay \(10^2 = 6^2 + CI^2\)
=> \(CI^2 = 10^2 - 6^2 = 100 - 36 = 64\)
=> \(CI = \) \(\sqrt{64}\) = 8
c) Xét 2 tam giác vuông AHI và tam giác BKI có:
AI = BI (cmt)
góc A = góc B (vì tam giác ACI = tam giác BCI)
=> tam giác AHI = tam giác BKI (cạnh huyền- góc nhọn)
=> HI = KI (2 cạnh tương ứng)
a: Xét ΔMAC và ΔMBD có
MA=MB
góc AMC=góc BMD
MC=MD
Do đo: ΔMAC=ΔMBD
b: Xét ΔABC và ΔBAD có
AB chung
BC=AD
AC=BD
Do đo: ΔABC=ΔBAD
c: Xét ΔCKA vuông tại K và ΔDHB vuông tại H có
CA=DB
góc ACK=góc BDH
DO đo: ΔCKA=ΔDHB
=>CK=DH
E C D N M H K B A
a) Xét △BMA và △BMD có:
BAM = BDM (= 90o)
BM : chung
MBA = MBD (BM: phân giác ABC)
\(\Rightarrow\)△BMA = △BMD (ch-gn)
\(\Rightarrow\)BA = BD (2 cạnh tương ứng)
b) Xét △ABC và △DBE có:
BAC = BDE (= 90o)
BA = BD (cmt)
ABD : chung
\(\Rightarrow\)△ABC = △DBE
c) Xét △MKA và △MHD có:
MKA = MHD (= 90o)
MA = MH (cmt câu a)
KMA = HMD (đối đỉnh)
\(\Rightarrow\)△MKA = △MHD (ch-gn)
\(\Rightarrow\)MK= MH (2 cạnh tương ứng)
Xét △MNK và △MNH có:
MKN = MHN (= 90o)
MN: chung
MK = MH (cmt)
\(\Rightarrow\)△MNK = △MNH (ch-cgv)
\(\Rightarrow\)MNK = MNH (2 cạnh tương ứng)
\(\Rightarrow\)MN là phân giác HMK
d) Ta có:
NA = NK + AN
ND = NH + HD
Mà NK = NH (△NMK = △NMH) và KA = HD (△MAK = △MHD)
\(\Rightarrow\)NA = ND
Xét △BNA và △BND có:
BN: chung
BA = BD (cm câu a)
NA = ND (cmt)
\(\Rightarrow\)ABN = DBN (2 góc tương ứng)
\(\Rightarrow\)BN là phân giác ABD
Kết hợp với BM là phân giác ABD
\(\Rightarrow\)B, M, N thẳng hàng