K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

\(x^3-x^2-21x+45\)

\(=\left(x^3-3x^2\right)+\left(2x^2-6x\right)+\left(-15x+45\right)\)

\(=x^2\left(x-3\right)+2x\left(x-3\right)-15\left(x-3\right)\)

\(=\left(x^2+2x-15\right)\left(x-3\right)\)

\(=\left[\left(x^2-3x\right)+\left(5x-15\right)\right]\left(x-3\right)\)

\(=\left[x\left(x-3\right)+5\left(x-3\right)\right]\left(x-3\right)\)

\(=\left(x+5\right)\left(x-3\right)^2\)

11 tháng 7 2018

\(4x^4-21x^2+1\)

\(=\left(2x^2\right)^2+2.2x^2+1-25x^2\)

\(=\left(2x^2+1\right)^2-\left(5x\right)^2\)

\(=\left(2x^2+1-5x\right)\left(2x^2+1+5x\right)\)

11 tháng 7 2018

\(4x^4-21x^2+1=\left(2x^2-\frac{21}{4}\right)^2-\frac{425}{16}.\)

20 tháng 10 2016

\(=x^5-x^2+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)

20 tháng 10 2016

BIẾT CHẾT LIỀN

 

28 tháng 1 2022

4x4 - 21 x2y+ y4 

= (4x4 + 4x2y2 + y4) - 25x2y2 

=  [(2x2)2 + 2x2 . 2 . y2 + (y2)2] - 25x2y2

= (2x2 + y2) - 25x2y2 

= (2x2 + y2 - 5xy) (2x2 + y2 + 5xy)

2 tháng 10 2016

Ta có :

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+5=t\)

=> Đa thức trở thành 

\(\left(t-1\right)\left(t+1\right)+1\)

\(=t^2-1+1\)

\(=t^2\)

Thay vào ta được 

Đt=\(\left(x^2+5x+5\right)^2\)

2 tháng 10 2016

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)                 (1)

Đặt \(x^2+5x+5=t\)  thì (1)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)

6 tháng 11 2017

\(\left(x+y+z\right)^3-x^3-y^3-z^3.\)

\(=x^3+y^3+z^3+3\left(x+y\right)\left(x+z\right)\left(y+z\right)-x^3-y^3-z^3\)

\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)

           ~ Chúc bạn học tốt~

6 tháng 11 2017

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+3x^2yz+3xy^2z+3xyz^2+y^3+z^3-x^3-y^3-z^3\)

\(=3x^2yz+3xy^2z+3xyz^2\)

\(=3xyz\left(x+y+z\right)\)

11 tháng 12 2015

Lữ Nguyễn Duy Đức : bắt chước Nguyễn Khắc Vinh