Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x y z biết
\(\sqrt{2016.x^2+4}+\sqrt{2017y^2+9}=9-\sqrt{2019z^2+25}\)
đăng bài này nè
Vì \(a+b+c=2016\Rightarrow a=2016-\left(b+c\right);b=2016-\left(a+c\right);c=2016-\left(a+b\right)\)
Ta có:\(S=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(S=\frac{2016-\left(b+c\right)}{b+c}+\frac{2016-\left(a+c\right)}{a+c}+\frac{2016-\left(a+b\right)}{a+b}\)
\(S=\frac{2016}{b+c}-1+\frac{2016}{a+c}-1+\frac{2016}{a+b}-1\)
\(S=2016.\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(S=2016.\frac{1}{2016}-3\)
\(S=-2\)
\(A=\frac{2016a}{ab+2016a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}\)
\(A=\frac{2016a}{ab+2016a+abc}+\frac{b}{bc+b+2016}+\frac{bc}{abc+bc+b}\)
\(A=\frac{2016a}{a\left(b+2016+bc\right)}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)
\(A=\frac{2016}{b+2016+bc}+\frac{b}{bc+b+2016}+\frac{bc}{2016+bc+b}\)
\(A=\frac{2016+b+bc}{2016+b+bc}=1\)
Thay : 2016 = abc
ta có :
\(A=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(A=\frac{a^2bc}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(A=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(A=\frac{ac+c+1}{ac+c+1}\)
\(A=1\)
vậy \(A=\frac{2016.a}{ab+2016.a+2016}+\frac{b}{bc+b+2016}+\frac{c}{ac+c+1}=1\)
Chúc bạn học tốt !
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)=-ab\left(a+b\right)\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
TH1 : \(a+b=0\Leftrightarrow a=-b\)
\(M=\left(-b^{15}+b^{15}\right)\left(b^4+c^4\right)\left(c^{2016}+a^{2016}\right)\)
\(M=0\left(b^4+c^4\right)\left(c^{2016}+a^{2016}\right)=0\)
TH2 : \(b+c=0\Leftrightarrow b=-c\)
Đến đây tịt :) bác nào biết giải tiếp giúp Nghị Hồng Vân Anh
đề cho a,b trái dấu rồi nên có một trường hợp thôi nha Trần Thanh Phương, cảm ơn bạn
a) Gọi số đo của các goác lần lượt là x,y,z
Theo đề bài ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=180\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{180}{9}=20\)
=>\(\begin{cases}x=40\\y=60\\z=80\end{cases}\)
vì các góc của tam giác tỉ lệ vs 2,3,4 nen ế gọi các góc lần lượt là a,b,c thì a/2=b/3=c/4 vì a,b,c là 3 góc của tam giác nên a+b+c=180
áp dụng gì đó ko nhớ có
a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=> a/2=20 nên a=40cm
b/3=20 nên b=60cm
c/4=20 nên c=80cm
vậy 3 cạnh là 40cm,60cm và 80cm
Ta có : \(a+b+c=2016\Rightarrow\frac{1}{a+b+c}=\frac{1}{2016}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left[\frac{c^2+ac+bc+ab}{abc\left(a+b+c\right)}\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(c^2+ac+bc+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}a+b=0\\b+c=0\\c+a=0\end{array}\right.\)
Từ (1) , (2) và (3) ta có điều phải chứng minh.